
IEEE TRANSACTIONS ON COMPUTERS 1

Rethinking Memory Management in Modern
Operating System: Horizontal, Vertical or
Random?

Lei Liu, Yong Li, Chen Ding, Hao Yang and Chengyong Wu

Abstract—On modern multicore machines, the memory management typically combines address interleaving in hardware and
random allocation in the operating system (OS) to improve performance of both memory and cache. The conventional solutions,
however, are increasingly strained as a wide variety of workloads run on complicated memory hierarchy and cause contention
at multiple levels. We describe a new framework (named HVR) in OS memory management to support a flexible policy space
for tackling diverse application needs, integrating vertical partitioning across layers, horizontal partitioning and random-
interleaved allocation at a single layer. We exhaustively study the performance of these policies for over 2000 workloads and
correlate performance with application characteristics. Based on this correlation we derive several practical rules of memory
allocation that we integrate into the unified HVR framework to guide resource partitioning and sharing for dynamic and diverse
workloads. We implement our approach in Linux kernel 2.6.32 as a restructured page indexing system plus a series of kernel
modules. Experimental results show that our framework consistently outperforms the unmodified Linux kernel, with up to 21%
performance gains, and outperforms prior solutions at individual levels of the memory hierarchy.

Index Terms— Multicore, Cache, DRAM, Bank, Locality Analysis, Memory Management, Operating System.

—————————— u ——————————

1 INTRODUCTION
EMORY resource sharing is fundamental to the per-
formance of multicore machines. To date, the most

common mechanism for memory (DRAM banks) and
cache sharing used in commodity machines is based on
address interleaving: the physical address of a memory
request determines where in the last level cache (LLC) set
or DRAM bank the request is to be serviced. In the past
many years, this approach has been general and effective
to meet the needs of conventional workloads. However,
as more applications are run in parallel, they often exhibit
conflicting memory access patterns. Therefore, the “one-
size-fits-all” approach becomes more risky, as it causes
inter-program perturbation, resource thrashing, poor
memory/cache utilization, and consequently, degraded
performance.

Many prior studies rely on OS level partitioning-based
memory management strategies to horizontally partition
either DRAM banks [11,18,19,23,26] or LLC sets
[15,17,22,28,35] to mitigate the interference among differ-
ent programs. However, these “horizontal” partitioning
approaches have the following drawbacks: (1) Targetting

a single level in the memory hierarchy: Due to the hori-
zontal nature, all these approaches attempt to partition
only one level of the memory hierarchy. Thus, memory
contention and conflicts were not addressed simultane-
ously at multiple levels in the memory hierarchy; (2) Sin-
gle policy based management: These existing approaches
are largely single policy based, and memory allocation
optimizations are typically confined within the same level
in the memory hierarchy, failing to provide flexible and
customized memory allocation for individual applica-
tions’ sharing and capacity needs; (3) Application oblivi-
ousness: Wisely using shared resource requires an under-
standing and differentiation of different applications’
characteristics. Most prior studies show how to adapt a
single strategy horizontally but not how to select the best
strategy by considering both the memory hierarchy in-
formation and application characteristics.

To address all of the above challenges, we propose an
OS based approach to partition and manage memory re-
source vertically across different levels of the memory
hierarchy (e.g., DRAM and LLC). Enabling such vertical
partitioning addresses contention at multiple memory
levels and creates a larger solution policy space from
which OS can choose to satisfy diverse resource require-
ments. In practice, there are still many cases where simple
random interleaving allocation strategy performs better
than any of the partitioning approaches. Therefore, in this
work, we integrate Horizontal partitioning, Vertical parti-
tioning, and a Randomized page interleaving policy (sim-
ilar to H. Park et al.’s M3 [27]) to create HVR, a low over-
head, unified memory allocator that we implement in the

xxxx-xxxx/0x/$xx.00 © 200x IEEE Published by the IEEE Computer Society

M

————————————————
• Lei Liu, Hao Yang and Chengyong Wu are with the State Key Laboratory

of Computer Architecture (SKL), Institute of Computing Technology (ICT),
Chinese Academy of Science (CAS). 0612J, No.6 Kexueyuan South Road
Zhongguancun,Haidian District Beijing,China. E-mail: {liulei2010,
yanghao2014, cwu}@ict.ac.cn.

• Yong Li is now with the vCenter Performance, VMware R&D
3401 Hillview Ave, Palo Alto, CA 94304. E-mail: yong1222@gmail.com.

• Chen Ding is with the Computer Science Department, University of Roch-
ester, Rochester, New York. E-mail: cding@cs.rochest.edu.

2 IEEE TRANSACTIONS ON COMPUTERS

Linux kernel. HVR uses an online classification module to
characterize memory/cache behavior and automatically
selects among the candidate policies.
 To determine appropriate memory management poli-
cies and to address conflicting allocation preferences, we
conduct more than 10,000 experiments for over 2000
workloads on production machines with mainstream
processor and memory configurations. Using data mining
to analyze our results, we generate a set of practical parti-
tioning and coalescing rules and organize them in a poli-
cy decision tree to enable HVR with the automatic policy
selection, dynamic resource partitioning and coalescing.
We summarize our contributions below:
(1) Vertical Partitioning (VP) (Section 3). We leverage
the overlapped bits (O-bits) in the physical page address
for indexing both DRAM banks and cache sets to parti-
tion memory hierarchy vertically, and achieve accumulat-
ed gains from multiple horizontal partitioning methods.
(2) SysMon (Section 4). We develop a kernel module tool
named SysMon to dynamically capture application be-
haviors including memory footprint, active pages, page
re-use time and cache utilization. The information is used
to categorize applications online without offline profiling
and without using hardware performance counters.
(3) Partitioning and Coalescing (Section 5.1 and 5.2). By
mining extensive experimental results on varying policies
for many workloads, we derive partitioning and coalesc-
ing rules to partition resources when needed, while al-
lowing non-interfering programs to share resources.
(4) A Multi-Policy Framework (Section 5.3 and 5.4). We
design the HVR framework that supports vertical parti-
tioning, horizontal partitioning and random interleaving.
We further design a variant VP approach (e.g., Curve-VP)
that extracts more performance gains in common cases by
combining partitioning and coalescing rules.
(5) Implementation in Linux kernel (Section 6). We in-
troduce x-Buddy, a restructured physical page indexing
system in Linux kernel 2.6.32 to support all the compo-
nent policies and the partitioning/coalescing rules in
HVR. The SysMon tool is implemented as kernel modules.
Our implementation adds less than 3000 lines of source
code into the Linux kernel source tree. HVR requires no
hardware changes and performs well for both multi-
threaded and multi-programmed workloads.
 Our experiments on a real machine show that vertical
partitioning outperforms prior techniques [17,18]. Based
on the classification module (which is 100% accurate as
verified by static profiling) and partitioning/coalescing
rules (around 90% accuracy verified by experimental re-
sults), HVR system achieves consistent performance gains
over the unmodified Linux kernel and outperforms prior
utility-based software partitioning [17,18] by up to 21%.
HVR is also demonstrated to perform well when han-
dling dynamic workload changes in daily computing and
production environments.

2 BACKROUND
2.1 Buddy Memory Allocation System
Today’s Linux operating system adopts a buddy system

Figure 1. Address mapping for cache and bank partitioning.

to manage and allocate physical pages to various applica-
tions for low overhead and high efficiency [14,34]. The
current buddy system maintains 11 free lists with orders
ranging from 0 to 10. The free list with order R organizes
pages in blocks, and each block has 2R continuous pages.
Upon a memory allocation request, the buddy system is
responsible for identifying a free list with an appropriate
order and selecting one block from the free list for alloca-
tion. One larger block with a higher order can be split into
smaller blocks of lower orders when necessary. Buddy
system aims to satisfy various memory requests from di-
verse applications as generally and efficiently as possible.
To a considerable degree, the buddy system achieves its
goal in the single-core era.

2.2 Page-Coloring Based Memory Management
Multicore architecture poses new system design and op-
timization challenges, particularly on memory allocations,
since it allows all applications to share LLC (Last Level
Cache) and DRAM banks, resulting in severe contention
in many cases. Previous research efforts [13,26] show that
contention can significantly degrade the overall system
performance and many solutions have been proposed to
mitigate the contention problem.
 One of the most effective optimizations is page-coloring,
which allows an OS kernel to leverage the underlying
architecture information such as the physical address
mapping of LLC and DRAM. With page-coloring, one can
mitigate the contention problem [5,17,23,31,33,35,39] by
modifying the kernel’s buddy system while avoiding ex-
pensive hardware changes to memory controllers or
cache hierarchies.
 Page-coloring may be used for two purposes: cache
partitioning and DRAM bank partitioning. As shown in
Figure 1, cache partitioning can be achieved by using the
bits in the OS physical page address that denote LLC set
index (LLC color bits) as color bits. When allocating a
page for an application, OS can assign a physical page
with a specific color so that the application can only ac-
cess the cache sets with the assigned color. Recent studies
[11,18,19,23] utilize page-coloring to partition DRAM
banks as there are also bits in the physical page address
that denote DRAM bank address. The difference is that
the bank color bits in physical page address might be dis-
tributed on some platforms [18,19].

3 MEMORY ALLOCATION POLICIES
In this section we study the existing policies of memory
allocation in the OS kernel and introduce our new meth-
ods to expand the policy space. Based on a performance
analysis of these policies we identify several challenges
and opportunities. Ⅳ

LEI LIU ET AL.: RETHINKING MEMORY MANAGEMENT IN MODERN OPERATING SYSTEM: HORIZONTAL, VERTICAL OR RANDOM? 3

Figure 2. Address mapping from the view of OS and three categories
of color bits on a typical multicore machine.

3.1 Memory Policies and Architecture Details
Traditional partitioning policies such as those mentioned
in Section 2.2 are horizontal in that they partition either
cache or main memory (DRAM banks) in one dimension.
With the page-coloring technique, the horizontal parti-
tioning can be implemented by selecting bank or cache
indexing bits as colors when allocating a page. Our de-
tailed architectural study reveals that the coloring bits can
be classified into three categories: bank-only bits (B-bits),
cache-only bits (C-bits) and overlapped bits (O-bits index
both bank and cache in Figure 1). In particular, the O-bits
enable a vertical partitioning (VP) that partitions both
cache and memory banks, vertically through the memory
hierarchy. By combining horizontal and vertical partitions,
we can create many new policies.
 Figure 2 illustrates the three types of color bits on a
typical machine (Intel i7-860 with 8GB memory and 64
banks in 4 DIMMs. B-bits: 21~22; C-bits: 16~18; O-bits:
14~15). As the platform is equipped with two memory
channels (denoted by XOR between the 6 and 16 bits [18,
19]), five bits (two B-bits, two O-bits and the 13 bit can
constitute 32 colors) are sufficient to index 64 banks dis-
tributed across two channels (32 banks in each channel).
This address mapping mechanism is called channel-level
cache-line interleaving, which aims to maximize band-
width utilization in common cases [19].

In our study, B-bits can be detected by prior approach-
es presented in [18,19,27], and C-bits can be inferred from
[17] and Intel product manual. Notably, on our platforms,
there are 7 bits (12~18 bit) in PFN that can be used to par-
tition an 8MB last level cache. Among them, bits 12~13
also determine L2 cache index (particularly, bit 13 actual-
ly indexes L2 sets, LLC sets and DRAM banks), thus we
do not use them in our partitioning techniques so as to
avoid partitioning the L2 cache.

In Table 1, we list six representative policies using these
coloring bits. Each policy partitions certain resources (i.e.,
cache, DRAM banks, or both of them) to a different extent
and thus performs best in some of the scenarios. For ex-
ample, A-VP uses the two O-bits to partition both LLC
and DRAM banks into four colors (groups), thus it is suit-
able for applications with modest memory/cache de-
mands as only one fourth of the LLC and DRAM banks
can be used by each color.

3.2 Impact of Vertical Memory Management
Prior studies [9,11,15,17,18,22,23,26,39] demonstrate that
horizontal partitioning on DRAM banks or LLC is effec-
tive in eliminating inter-program interference and im-
proving performance. With vertical partitioning and, mo-
re generally, our partitioning policy space, one important
question is whether the benefits from the horizontal
memory and cache partitioning can be accumulated (i.e.,
should we go vertical in partitioning?).

Figure 3. Performance improvement of Cache- and Bank-Only parti-
tioning for 214 workloads. Green diamond dots: 4-programmed; Red
diamond dots: 8-programmed; Blue squares: A-VP friendly; Black
triangles: B-VP friendly; Brown circles: C-VP friendly. Note that the
metric of overall system performance is Weighted Speedup, which is
widely used to show the overall system performance.

 To answer the above question, we investigate over 200
random workloads composed of programs from SPEC-
CPU 2006 [1]. This experiment includes two steps. In the
first step, for each workload we run multiple experiments
to obtain the performance gains of that workload with
horizontal partitioning. The performance improvements
are compared against the unmodified Linux kernel as the
baseline. All of the experimental results are reported in
the four-quadrant Cartesian plane in Figure 3. The hori-
zontal axis and vertical axis represent the weighted
speedup [13] improvements achieved through the bank-
only and cache-only partitioning, respectively. Workloads
that contain 4 or 8 programs are denoted as 4/8-
programmed workloads. From Figure 3 we can see about
half of the tested workloads fall into Quadrant I. For these
workloads, both cache-only policy and bank-only policies
bring certain levels of performance improvements.
 In the second step, we randomly select tens of work-
loads in the Quadrant I and measure their performance
on A-, B- and C-VP, respectively. We find that these
workloads (i.e., those highlighted by blue squares, black
triangles and brown circles) achieve optimal performance
with one of the VP policies (shown in Figure 4), indicating
that their performance benefits accumulate to a certain
degree due to the vertical partitioning on both cache and
main memory banks. Shown in Figure 3 Quadrant I, dif-

Policy Coloring Bits Description Target Cores
Cache-Only C-bits {16~18} LLC à 8 groups 4/8-core

Bank-Only (4) B-bits {21~22} Banks à 4 groups 4-core

Bank-Only (8) B-bits {21~22}
O-bits {15}

LLC à 2 groups
Banks à 8 groups 8-core

A-VP (4) O-bits {14~15}
LLC à 4 groups

Banks à 4 groups 4-core

B-VP (8)
B-bits {22} +
O-bits {14~15}

LLC à 4 groups
Banks à 8 groups 8-core

C-VP (8) C-bits {16} +
O-bits {14~15}

LLC à 8 groups
Banks à 4 groups 8-core

Table 1. Six representative partitioning policies.

Ⅲ Ⅳ

Ⅱ Ⅰ

4 IEEE TRANSACTIONS ON COMPUTERS

 (a) 4-programmed workloads (A-VP performs the best).

 (b) 8-programmed workloads (B-VP performs the best).

 (c) 8-programmed workloads (C-VP performs the best).
Figure 4. Performance improvement of A/B/C-VP.

ferent symbols denote workloads with different proper-
ties. For example, blue squares represent A-VP friendly
workloads, which achieve the best performance with A-
VP policy, as depicted in Figure 4 (a).
 Quadrant IV contains workloads for which bank-only
partitioning is beneficial while cache-only partitioning is
detrimental. We study workloads in this quadrant and
find that the performance benefits achieved by bank par-
titioning are largely offset by the side effect of cache parti-
tioning (VP is not useful). Thus, for workloads in this
quadrant, it is desirable to disable cache partitioning and
enable bank partitioning. There are few workloads in
Quadrant II and Quadrant III, indicating that bank-only
partitioning is rarely harmful, and does not bring nega-
tive impact under most of the cases.

From Figure 4 we can draw the conclusion that for
workloads that benefit from both cache-only and bank-
only partitioning (50 workloads in Quadrant I of Figure 3),
VP can accumulate the performance gains. For these
workloads, using one of the A-/B-/C-VP policies can
achieve optimal performance. For instance, A-VP can
achieve up to 16.7% improvement over the baseline sys-
tem (unmodified Linux kernel), while 5.9% and 11.7%
over the cache-only and bank-only partitioning, respec-
tively. We also run these multi-programmed workloads
on random, interleaved page allocation (in section 3.3),
and they perform better with the partitioning policies.

3.3 Random-Interleaved Allocation
Although the above analysis demonstrates that various
partitioning policies achieve different levels of perfor-
mance gains, there are cases where none of the partition-
ing-based memory allocation is preferred. One important
scenario is that the running workload exhibits heavy data

Figure 5. Normalized slowdown with different LLC capacity.
sharing, which defeats the purpose of any resource parti-
tioning mechanism [18]. For example, multi-threaded
workloads typically share considerable amount of data
and thus multiple threads access the same memory or
cache bank regardless whether the memory/cache is par-
titioned or not.
 To optimize multi-threaded workloads, the recently
proposed M3 [27] enforces a random-interleaved page
allocation in the OS kernel to avoid hot spots and row
buffer conflicts on heavily shared banks. We conducted
experiments and verified that the random memory alloca-
tor outperforms partitioning-based approaches for multi-
threaded workloads. Therefore, to handle multi-threaded
workloads, we integrate a randomized page-interleaving
scheme to achieve similar effects of M3 in our framework
(see Section 6.2).
 An obvious conclusion can be drawn from the above
presented quantitative study is that the effectiveness of a
memory allocation policy depends on specific application
characteristics, in particular the cache requirements. In
practice, a workload could contain several simultaneously
running applications with an arbitrary combination of
diverse characteristics, making it difficult to determine
the appropriate policy of memory allocation.

4 APPLICATION CHARACTERIZATION VIA SYSMON
Determining an advantageous memory allocation policy
requires an accurate prediction of a running workload’s
memory/cache characteristic and its reaction to each allo-
cation policy. To characterize application memory behav-
ior, we develop SysMon, an efficient online tool inte-
grated in the Linux kernel to monitor system-level appli-
cation activities such as page access frequency, memory
footprint (all used pages), active pages, page re-use time,
etc. Collectively, these metrics from SysMon can be used
to classify applications into different categories and select
appropriate memory allocation policies.

4.1 Application Categories
Based on our experiments we find that most multi-
programmed workloads are not negatively affected by a
modest bank-partitioning (<= 8 groups) scheme. By con-
trast, the performance of cache partitioning exhibits great
variations due to different cache utilization behaviors of
the running workloads (in Figure 3).

LEI LIU ET AL.: RETHINKING MEMORY MANAGEMENT IN MODERN OPERATING SYSTEM: HORIZONTAL, VERTICAL OR RANDOM? 5

 In order to verify the potential impact of cache utiliza-
tion characteristics on cache partitioning policies, we col-
lect performance slowdowns of various applications as
the cache quota is reduced from 8/8 (entire cache is used)
to 1/8. Each application is executed eight times and each
time a different amount of LLC is assigned by the page-
coloring based cache partitioning. Based on the results we
classify applications’ caching behaviors into four catego-
ries: Core Cache Fitting (CCF), LLC High (LLCH), LLC
Middle (LLCM) and LLC Thrashing (LLCT). Figure 5 re-
ports the classification of various benchmarks in the
SPECCPU 2006 benchmark suite [1]. CCF applications
(denoted as green curves), such as hmmer and namd, do
not degrade significantly when using fewer LLC re-
sources since their working set sizes are small enough to
fit into the L1 and L2 per-core private caches. LLCT appli-
cations (black curves), such as libquantum, are also insen-
sitive to cache quotas, but due to cache thrashing behav-
ior rather than small working set sizes. LLCH applica-
tions (red curves) such as mcf suffer the worst perfor-
mance degradations from reduced cache quotas due to
their resource hungry characteristics. Compared to LLCH,
LLCM (blue curves) applications use fewer cache re-
source, thus the slowdowns are not as much as in LLCH
applications. For example, gcc and bzip2 are LLCM as they
suffer no significant degradation when cache decreases
from 8/8 to 4/8. However, a sharp performance drop is
observed when the cache quota drops below 3/8.

4.2 Dynamic Application Classification
The static profiling approach used to generate Figure 5
requires running each application multiple times and
does not capture dynamically changing behavior. To pre-
dict cache requirement and classify applications on the fly,
we explore the relation between application page access
behavior and cache utilization. The key insight is that the
number of hot pages (active pages used in a particular time
interval) can reflect an application’s LLC demand in
many cases due to the DRAM row-buffer locality [29].
SysMon can identify hot pages by examining the access
bit [39,40] in the page table entry (PTE). Figure 6 shows
the correlation between the number of hot pages and
cache demands for several benchmarks. Taking hmmer as
an example, the number of hot pages, denoted in red col-
or, is extremely low (at most 19 hot pages over the entire
sampling period). This indicates that a maximum amount

Figure 7. Online application classification algorithm in SysMon.
(AVG(x) is a function to compute the average of x in three consecu-
tive intervals).
of 19×4KB (4KB per page) cache resource is needed dur-
ing the sampling period. Similar principle can be applied
to other benchmarks in SPECCPU 2006.

To this end, a simple estimation of LLC utilization can
be achieved by dividing the number of hot pages (NHP)
by the number of pages the LLC can accommodate (NPC).
This metric (NHP/NPC) represents the percentage of
LLC occupied by hot pages and is shown as the cache
fitting curve in Figure 6 (vertical axis on the right side of
each sub-figure). In the case of hmmer, less than 1/8 of the
LLC is required, indicating a CCF classification. A sharp
contrast is mcf, which is classified as LLCH since it has
large amount of hot pages (1143 to 15813) that cannot be
accommodated in most modern computers’ LLC (e.g.,
8M). For an LLCM application (e.g., bzip2), the number of
hot pages falls between that of the LLCH and CCF appli-
cation and the required LLC quota typically varies be-
tween 1/4 and 1/2.

For an application that touches a large number of pages
but exhibits poor reference locality (e.g., sjeng touches
many hot pages but only a small amount of them are
heavily accessed and thus would benefit from being
cached), using only the number of hot pages will mislead
the above simple method to a wrong classification of
LLCM or LLCH. To address this issue, we define weighted
page distribution (WPD), a metric used to reflect page ref-
erence locality and can be obtained by per-page access
counters in SysMon. Based on the above analyses, we
devise an online application classification algorithm de-
tailed next.

 Figure 6. Applications’ hot pages and their demands for LLC capacity.

6 IEEE TRANSACTIONS ON COMPUTERS

 Figure 8. Page-level memory access frequency distribution.

4.3 Application Classification Process
Figure 7 illustrates the classification process where two
tasks, JOB1 and JOB2, works together in SysMon. JOB1 is
responsible for collecting the number of hot pages. Its
sampling time interval is 3s in our system and the sam-
pling duration in each interval is 10μs (at most). Our ex-
periments show that 10μs is enough to collect sufficient
information and incurs a negligible overhead. During
each sampling JOB1 first clears __access_bit by the
pte_mkold() kernel function, and then collects the number
of hot pages (__access_bit set to 1) at the end of the sam-
pling. Note that hot page numbers are averaged over sev-
eral sampling intervals to avoid temporary spikes and
reflect stable program behaviors.

JOB2 uses an array of page access counters to record
the number of accesses for each page. Since the OS itself
does not frequently reset the __access_bit, once set by the
CPU, JOB2 employs a loop to periodically clear
__access_bit and collects the access information during
this period. JOB2 incurs slightly more overhead than
JOB1, but the amortized overhead over the sampling time
window (also 3s) is not high since it switches to the sleep
mode after iterating 200 times (the time cost is far less
than 3s). Based on the page access counters, JOB2 records
the numbers of pages by grouping the counter values into
five ranges: VH [150, 200], H [100, 150], M [64, 100], L [10,
64] and VL [1, 10]. For example, M denotes the number of
pages with a counter value large than or equal to 64 but
smaller than 100. By doing this, SysMon can gain a global
view of the page-level memory access frequency distribu-
tion. As illustrated in Figure 8 (a darker color indicates a
larger number of pages), the distribution of pages with a
different access frequency varies over different sampling
intervals (horizontal axis). Due to the space constraint,
Figure 8 shows only a small fraction of the sampling time
period, which is representative of the whole period.
Based on the above information, the WPD is computed as:
WPD=(2XVH+1.5XH+1XM+0.5XL+0.1XVL)/all_used_pages,
where all_used_pages is the total number of pages accessed
during a JOB2’s sampling period (200 iterations). Notably,
the row-buffer locality of one particular application can
be estimated by WPD. Taking sjeng as an example, alt-
hough it touches as many pages as some LLCM/LLCH
applications, the per-page access frequency is relatively
lower than that of a LLCM/LLCH application such as mcf.
Correspondingly, the WPD value of sjeng is much lower
than that of mcf.

In addition to the above metrics, page-level re-use time
is also an important factor that can reflect an application’s
memory/cache behavior. In each sampling window,
SysMon uses an array to record the number of intervals
(i.e. the logic time) between two memory accesses to a
specific page that cause __access_bit being set to 1. The pa-

Figure 9. The re-use time of typical applications (the horizontal axis
of each graph denotes the entire running time, and sysmon randomly
selects one page in a sampling perild. The vertical axis denotes the
logic re-use time ranging from 0~200 logic times).
-ge on which the re-use information is collected is ran-
domly selected at the beginning of each sampling. This
approach ensures that our collected re-use information is
not biased and reflects the general trend over time. We
tried several different random page selection mechinasms,
and found the re-use patterns are highly similar. Figure 9
illustrates the re-use time sampling by SysMon across
several representative benchmarks of different categories.
An interesting finding is that LLCT applications often
exhibit relatively more stable and lower re-use time. For
example, libquantum and GemsFDTD show lower and
more stable logical re-use time (around 20 on average),
which are quite different from other types of applications.
This feature can be used to identify LLCT applications
effectively and efficiently in practice. Note that, in Figure
9, lbm exhibits a similar re-use time pattern observed in an
LLCT application, but also behave in a similar manner as
an LLCM application (performance drops modestly as
cache capacity is reduced). For applications of this type,
we found in our experiments that the LLCT feature often
determines the overall performance. Thus, in our applica-
tion classification algorithm we identify the LLCT feature
first, before determining any other characteristics for an
application.

Based on the WPD metric to measure reference locality,
the hot page number and a series of thresholds, we devise
a classification algorithm shown in Figure 7. The values of
rt_threshold (re-use time threshold), ccf_threshold,
hot_freq_threshold and llch_threshold are 20, 100, 10% and
1000, respectively. The constants in our algorithm (i.e.,
sampling interval, weighted, thresholds, and etc.) are
empirical values based on the analyses of all programs
from SPECCPU 2006 with diverse memory features and a
wide range of workloads combinations. Thus, we con-
clude that our approach would be cost-effective, robust
and work well in real cases. These values can be adjusted
as necessary as the environment or the workload changes.

5 HANDLING MULTIPLICITY BY LEARNING RULES
The application classification information obtained from
the mechanism in Section 4 only reflects the partitioning
preference for a single application (or applications with

LEI LIU ET AL.: RETHINKING MEMORY MANAGEMENT IN MODERN OPERATING SYSTEM: HORIZONTAL, VERTICAL OR RANDOM? 7

similar behaviors). The challenge of selecting an appro-
priate scheme for co-running applications with an arbi-
trary combination of memory demands remains un-
addressed. To tackle this challenge, we adopt a data min-
ing approach to quantitatively study the impacts of vari-
ous memory allocation schemes on over 2000 workloads.
We summarize the outcome as partitioning/coalescing rules,
which can be used to handle diverse memory allocation
needs for simultaneously running applications.

5.1 Partitioning Rules
Given a multi-programmed or multi-threaded workload,
our first step is to select an appropriate memory alloca-
tion policy. To achieve this we collect a large amount of
performance data from more than 10,000 experiments
over 2000 workloads. For each workload, we use SysMon
in Section 4 to obtain a classification vector, a notation to
represent workload composition. For example, the classi-
fication vector of the workload {libquantum, mcf, bzip2,
hmmer} is denoted as {<lib, LLCT>, <mcf, LLCH>,
<bzip2, LLCM>, <hmmer, CCF>}. We run each workload
with different policies and record the results as <cache-
only: x%>, <bank-only: y%>, <A-VP: z%>, etc., where x%,
y% and z% are performance improvements achieved by
the corresponding policies. Based on the correlation be-
tween the classification vectors and the performance
gains on different policies, we draw several interesting
conclusions. First, almost all workloads that are combina-
tions of LLCT and other type(s) of applications perform
best on C-VP or A-VP. Second, a dominant percentage of
workloads containing LLCH but not LLCT perform best
on bank-only partitioning. Third, most workloads with
LLCM but no LLCT or LLCH applications achieve best
performance results with a modest cache partitioning
scheme such as A-VP and B-VP. We summarize the above
conclusions by the following three rules:
Rule-1: Workloads containing LLCT and other applications
(LLCH, LLCM, CCF) should use C-VP or A-VP (37.1% sup-
port, 94.4% confidence1).
Rule-2: Bank-only partitioning should be used for workloads
with LLCH and LLCM applications but without LLCT applica-
tions (34.3% support, 83.3% confidence).
Rule-3: B-VP should be used for 8-programmed workloads
with LLCM but no LLCT or LLCH applications (23.8% sup-
port, 87.9% confidence).

The above analyses and rules also imply a priority in
considering a memory allocation policy: LLCT > LLCH >
LLCM > CCF. This ordering indicates that LLCT is the
most “assaulting” type in that it brings a negative impact
on virtually all the other types of applications while CCF
is the most susceptible classification, and applications of
this type hardly affect other applications’ performance.
These results can be also explained by architectural
knowledge. In particular, Rule-1 is likely to perform well
on any LRU (least recently used)-based caches since LLCT
applications are not well handled by the LRU policy [10]
as they waste other applications’ resource without being

1 Confidence and support are terminologies in data mining. In our work sup-
port is defined as the proportion of workloads that contain the specific types of
applications in a rule; confidence indicates the accuracy of that rule.

Figure 10. Memory allocation policy decision tree (PDT)
benefited. Rule-2 and Rule-3 can be also explained from
the perspective of resource utilization.
 For multi-threaded workloads, recent research [18]
shows that bank partitioning only achieves a slight per-
formance gain. Additionally, H. Park et al. [27] argues
that a random page-interleaved allocation scheme outper-
forms partitioning schemes. We conducted experiments
for multi-threaded (see Section 7) workloads and verified
their conclusion. Thus, we add another rule for multi-
threaded workloads:
Rule-4: Multi-threaded workloads should use random page
allocation.
 Based on the four rules and their priorities relative to
each other, we generate a memory management policy
decision tree (PDT) shown in Figure 10. The PDT is use-
ful for choosing appropriate policies for diverse work-
loads.

5.2 Coalescing Rules and HVR
Despite the advantage in eliminating interference, a pure
partitioning based approach (e.g., use rules 1~3) is not
always preferable since it limits the cache capacity and
can harm the performance for resource hungry applica-
tions (e.g., LLCH). Additionally, in real production envi-
ronments, applications can be launched and terminated
arbitrarily. This dynamically changing application envi-
ronment can defeat any predetermined policy selection
method based on a static knowledge of workload compo-
sition such as the static VP described in Figure 10. To ar-
rive at a dynamic balance between partitioning and shar-
ing, we extend the partitioning decision tree with several
coalescing rules that can be used to merge the partitioned
resource quotas among certain types of applications. We
collect performance data of cache-only partitioning and
represent the result for each workload as <(n×LLCT,
m×LLCH, p×LLCM, q×CCF), x%>, where n, m, p, q are
the numbers of applications of a certain type and x% is
the performance gain achieved by the cache partitioning.
Based on the results, we find that for almost all work-
loads that contain LLCH or LLCM but no LLCT applica-
tions (n=0, m+p>0) cache partitioning always hurts per-
formance (x% < 0). Additionally, for the workloads con-
taining only LLCT applications (m=p=q=0, n>1), the im-
provement is quite modest (x%<1%) and for CCF domi-
nant workloads (n=m=p=0, q>1) no obvious impacts are
observed. Further, we run multiple LLCT applications
together on 1/8 LLC capacity and find that the overall

8 IEEE TRANSACTIONS ON COMPUTERS

performance is similar to the cases where they are par-
titioned or share the entire cache. The same results are
observed for CCF workloads. Thus, we derive the follow-
ing coalescing rules:
Rule-5: LLCH and LLCM applications should be coalesced
together to share the partitioned colors and cache quota (sup-
port: 39.5%, confidence: 87.2%).
Rule-6: LLCT and CCF applications should be coalesced re-
spectively to share the partitioned colors and small cache quota
(support: 7.8%, confidence: 90.5%).

The coalescing rules are important complements to the
partitioning rules for providing larger aggregate cache
capacity and reducing misses under a partitioned cache.
Utilizing partitioning and coalescing more flexibly is par-
ticularly useful for handling dynamic changes in the run-
ning workloads. For example, several partitioned cache
quotas under C-VP can be dynamically coalesced to form
a larger aggregate quota for accommodating multiple
non-conflicting applications launched in an arbitrary or-
der (see Rule-5 and Rule-6). On the other hand, a coa-
lesced space can be partitioned if an additional partition
is needed when an assaulting application (e.g., LLCT) is
launched. By combining partitioning and coalescing, we
develop a HVR (Horizontal, Vertical and Random) system,
which adopts both partitioning and coalescing rules
based on the composition of a workload (extracted from
SysMon). HVR starts with bank-only partitioning upon
kernel boot (to bring stable performance gains for all ap-
plications and reduce the amount of pages need to be mi-
grated when the policy changes). Thus, all running appli-
cation(s) share the entire cache capacity initially. As more
applications are launched and categorized by SysMon,
HVR partitions or merges cache space based on the
aforementioned partitioning and coalescing rules.

5.3 Curve-VP (Curve-Vertical Partitioning)
The baseline HVR system introduced in Section 5.2 has
the capability of handling dynamic workloads, but may
incur a page re-coloring and migration overhead to reach
a stable state. The page migration overhead can be non-
negligible in cases where frequent partitioning and coa-
lescing happen upon workload changes. For short-
running and transient application loads, starting with an

all-shared approach (bank-only partitioning) and adapt-
ing to other policies after training period might incur rela-
tively expensive costs. To avoid the overhead incurred
during partitioning and coalescing in the baseline HVR,
we introduce a special type of partitioning technique:
curve vertical partitioning (Curve-VP). To reduce page mi-
gration, Curve-VP features a relatively “rigid” yet effec-
tive partitioning approach: allocate a small slice of cache
quota (1/8) to all LLCT applications while having all the
other types of applications to share the remaining cache
space. Although merging CCF with LLCH and LLCM is
conflict with the partitioning rule, we found that with
modern multi-level caches CCF applications can be large-
ly satisfied by upper cache levels (L1 and L2), thus their
LLC quota can be merged to share the same region with
LLCH and LLCM applications without significant per-
formance penalty (see Section 8 for more details). We also
found that reserving a small cache region for CCF will
degrade LLCM and LLCH performance, which in some
cases cannot be compensated by the benefit in CCF appli-
cations.

As opposed to the baseline VP, Curve-VP is initialized
to use a heavily partitioned strategy. In particular, any
process, upon creation, is assigned the cache region (de-
noted by 16, 15 and 14 bits) 000 (by default, but this may
change based on real cases and user’s demands). After
SysMon collects enough information for this process (of-
ten after several sampling windows in seconds), the sys-
tem determines the category of the process. If the process
is identified as an LLCT application, no change is needed
and the subsequent page requests from this process still
uses the same dedicated cache region (Figure 11) to avoid
thrashing effects for the other types of applications. Alt-
hough in an extreme case a number of LLCT applications
can be squeezed into a small cache quota, their perfor-
mance is not likely to be greatly impacted due to their
poor cache utilization. Additionally, the number of simul-
taneously running LLCT applications is typically limited
by the number of cores, thus cannot pose a high pressure
to cache. DRAM banks, as an independent dimension,
can still be partitioned using the higher order bits (22,
21) to eliminate interference at bank level. In particu-
lar, each LLCT application can use one or more sub-

Figure 11. Cache/Bank allocation and memory mapping in Curve-VP (C-bit 16 and O-bits 15, 14 partition LLC into regions 000~111. Two
cache regions share one bank group partitioned by bits 15, 14. B-bits 22, 21 further divide each bank group into four sub-groups). Colors
are used to distinguish banks assigned to different threads. The figure is a “Memory-Map” to guide the allocation of Curve-VP.

LEI LIU ET AL.: RETHINKING MEMORY MANAGEMENT IN MODERN OPERATING SYSTEM: HORIZONTAL, VERTICAL OR RANDOM? 9

Figure 12. HVR Framework in a nutshell (with Curve-VP). Note that
Curve-VP can be replaced by bank partitioning and Random-
Interleaved policies.
groups in the bank group A (colors are used to distinct
different threads), dictated by the indexing bits represent-
ing cache region 000. On the other hand, if the process is
classified as LLCH, LLCM, or CCF, the subsequent page
requests are directed to region 001~111. The original pag-
es left on region 000 are migrated lazily when they are
accessed again, thus minimizing the migration cost (only
hot pages need to be migrated). Note that although these
applications share a large cache region (001~111), the
memory accesses are isolated at DRAM bank level.
Marked by the big red rectangle in Figure 11, in Bank
Group B, C and D, each SubGroup (denoted by different
colors and indexed by bits 21,22) is used by an application.
Moreover, since Curve-VP has the knowledge of
“Memory-Map” (Figure 11) and the applications’
memory features, it can avoid the unnecessary inter-
thread memory conflicts and the overhead caused by
page migration. The allocation process works as an ex-
panding “balloon” at both LLC and DRAM level.

5.4 Combining Policies into HVR Framework
Our final HVR framework includes A/B/C-VP (with par-
titioning and coalescing rules in dynamic cases), Curve-
VP, bank partitioning and Random-Interleaved allocation
(illustrated in Figure 12), forming a flexible and large de-
sign space. Note that Utility-based VP2 can also be inter-
graded into HVR by employing PMU hardware counters.
Curve-VP is particularly useful in a highly dynamic ap-
plication environment that would result in a large
amount of page migration if dynamic VP were used.
Curve-VP gives the largest possible amount of cache
space for applications that need cache resource while lim-
iting the resource for those with poor cache utilization. At
the DRAM bank level, partitioning is still enabled to fur-
ther segregate the potentially interfering applications that
share the same cache space. HVR can be adopted on a
wide spectrum of hardware and architectures, as O-bits
are common in many commercial platforms. Although
there are only two O-bits in our experimental systems,
studies show that more O-bits can potentially benefit the
overall system performance and bring more flexibility
and optimization opportunities.

6 X-BUDDY: SUPPORTING HVR IN LINUX KERNEL
The previously presented classification framework is im-
plemented as kernel modules in the Linux kernel 2.6.32 in
about 400 lines of source code. This section details our

2 Utility-based VP (UVP) starts with A/B/C-VP and dynamically ad-
justs cache partitioning based on cache misses monitored through hard-
ware performance counters. It is a normal approach with no pt&cls rules,
and may incur bank conflicts because it has no knowledge of “Memory-
Map”. We use Utility-Based approach as one of the base line in our fol-
lowing experiments.

Figure 13. x-Buddy system. Organized by O-bits 14,15; C-bits 16
and B-bits 21,22. It supports (Curve-) VP, bank partitioning and
Random-Interleavied allocation policies.
modifications to the kernel data structures and paging
algorithm to support the previously discussed policies
and the partitioning/coalescing rules in a unified system.
We implement HVR in roughly 2000 lines of source code
over the existing kernel source tree. HVR was originally
supported by two page-indexing systems: sub-system A
and sub-system B [20]. To simplify the page indexing sys-
tem and reduce the implementation overhead, we merge
sub-system A and sub-system B into one indexing system
named x-Buddy, as illustrated in Figure 13.

As in conventional Linux kernel, x-Buddy system
maintains free physical pages in orders of blocks from 0
to 10. Each block in order-n contains 2N continuous pages.
The five bits (22, 21, 16, 15, 14) from page frame number
(PFN) used in x-Buddy system form a set of 32 colors
(00000~11111), each of which has a free page list in our
modified kernel. As the selected five coloring bits cover
all the three categories (i.e., bits 22 and 21 are B-bits, bits
15 and 14 are O-bits, and bit 16 is C-bit), x-Buddy system
can support A/B/C-VP and horizontal bank partitioning
by choosing different coloring policies. In our platform,
the page offset is from bit 0 to 11 and the PFN starts from
bit 12. As the color bits begin from bit 14, every four con-
secutive pages in physical address share the same color.
In order-0 (upper left corner of Figure 13), each block is
an individual page and the block list under a particular
color is a set of pages of that color. For example, the block
list under green color in order-0 contains any free and
non-continuous pages with the five coloring bits being
00011. Order-1 and order-2 are similar to order-0 except
that two and four pages in a block are continuous. Each
block in order-3 has eight continuous pages and thus
spans two colors since there is one coloring bit (bit 14)
within the offset of a block in order-3. Similarly, a block in
order-4 spans two O-bits (bits 15 and 14) and thus has
four colors (16 pages), as depicted in Figure 13.

All the policies in our HVR framework can be sup-
ported in x-Buddy system. In particular, x-Buddy sup-
ports A-VP as the page coloring bits include bits 14 and
15. From the perspective of A-VP, the bit 16, 21 and 22 are
not coloring bits thus the buddy system views two colors
with the same lower two bits to be the same color (e.g.
00100 and 01000), or a color group. Each color group in
the four color-group pool dictated by bits 14~15 (00, 01,
10 and 11) represents one quota in A-VP, which partitions

10 IEEE TRANSACTIONS ON COMPUTERS

both cache and bank into four slices. In Figure 13, eight
colors with the same value at bit 14~15 form one color
group for A-VP (named an A-VP color group). For one
particular application, allocating pages within a dedicated
A-VP color group ensures the pages used by the applica-
tion are partitioned or segregated from other applications
using A-VP and thus the application only uses one quota
in A-VP. Similarly, x-Buddy supports C-VP by consider-
ing page coloring bits 14 ~16. Each color in the eight color
group pool dictated by bits 14~16 (000~111) represents
one quota in C-VP. By applying the same principle, x-
Buddy supports B-VP by leveraging B-bits (21,22) and O-
bits (14,15), which can be used together to partition cache
into up to four partitions and bank into up to 16 partitions.
Therefore, a page requested by any application can be
handled in x-Buddy using A/B/C-VPs or horizontal par-
titioning policies.

In x-Buddy system, the random-interleaved page allo-
cation for multi-threaded workloads can be achieved by
randomly selecting pages in the order-0 free list. Moreo-
ver, similar effect achieved by M3 [27] can be also sup-
ported in x-Buddy by allocating physical pages with all
32 colors (00000~11111) in a round-robin fashion and in-
terleaving requested pages evenly across all banks to re-
duce the potential bank conflicts. Based on the x-Buddy
system, we develop a hash-based searching algorithm
(see Pseudocode 1) to allocate a page in O(1) time (O(logn)
time complexity in extreme cases, where memory blocks
are frequently merging and splitting).
Pseudocode 1: Hashing algorithm for selecting pages
Input: (1) order; (2) target_color Output: one page of target color
BEGIN
/*CASE: Physical pages organized based on bits 14~ 16, 21~22*/
IF using 14, 15,16, 21, 22 THEN
 SWITCH (order)

case 0~2 3 4 5~9 10
colors_per_block 1 2 4 8 16

 END SWITCH
 block_color = (target_color / colors_per_block) ×colors_per_block;
 //The 4th bit (21 bit) is 1
 IF order is 10 AND the color bits are x1xxx THEN
 page_index = (target_color - block_color - 8) × 4 + (1 << 9);
 ELSE page_index = (target_color - block_color) × 4;
 END IF
END IF
Expand color block (page_index, order)
RETURN page[page_index] and remove this page from free list.
END
* target_color is the color of the requested page.
* block_color is the color of the first page in a block.
* colors_per_block is the number of colors in a block.

7 EVALUATIONS
7.1 Experimental Methodology
Our experimental machine has a quad-core eight-thread
2.8GHz Intel i7-860 processor with 8MB 16-way LLC and
8GB 64-bank (125MB/bank) DDR3 main memory. The
machine runs CentOS Linux 5.4 with the kernel 2.6.32. We
use SPECCPU2006 suite [1] for multi-programmed work-
loads and PARSEC 2.0 benchmark suite [2] for multi-
threaded workloads. All programs are compiled by gcc

Figure 14. Performance of different policies as bandwidth changes
(the baseline is the unmodified Linux kernel).

Figure 15. Average performance improvement of the bank partition-
ing, cache partitioning and Curve-VP with different number of LLCT
applications. Enabling coalescing in cache partitioning in some cas-
es for optimal performance.
4.4.3 with the O3 optimizations. We use weighted speedup
[13] (WS) to measure system performance and maximum
slowdown [13] for fairness. To evaluate our approaches,
we randomly generate tens of workload combinations of
different types of applications, and measure their perfor-
mance on different polices (Utility-based cache and bank
partitioning3, Curve-VP). For each combination we run
the experiment several times to average out the variations.
The baseline is un-modified buddy system in Linux ker-
nel 2.6.32.

7.2 The Effectiveness of VP
In our experiments, we test a large amount of workloads
to show the effectiveness of VP and its advantages against
horizontal partitioning. Figure 14 summarizes the per-
formance and fairness improvements of various policies
based on an average of workload performance in our ex-
periments. To demonstrate that the proposed scheme per-
forms robustly under different memory bandwidth, we
change the memory frequency from 1333 to 800MHz.
Figure 14 illustrates that on average all the three vertical
partitioning policies outperform the horizontal cache-only
or bank-only partitioning schemes. Particularly, A-VP is
nearly 6% better than cache-only partitioning and 5% bet-
ter than bank-only partitioning. As bandwidth decreases,
the contention becomes more severe and the three vertical
policies can bring even larger improvements. Therefore,
we can draw conclusion that vertical partitioning brings
additional benefits over horizontal partitioning and is a
promising memory management mechanism for future
multicore systems with increasing bandwidth pressure.

3 We have tried the optimal (with coalescing enabled in some cases)
utility-based (using PMU) dynamic cache/bank partitioning approaches
in our experiments, and compare them with our work.

LEI LIU ET AL.: RETHINKING MEMORY MANAGEMENT IN MODERN OPERATING SYSTEM: HORIZONTAL, VERTICAL OR RANDOM? 11

Figure 16. The performance trade-off for different applications in one
workload with 4 LLCT applications.
 However, we find that for some LLCT dominated
workloads, VP performs similar to the optimal cache par-
titioning. To further study this, we conduct experiments
using tens of workloads that contain different numbers
(1~4) of LLCT applications, and each of them also con-
tains several LLCH or LLCM applications. We use the
newly proposed Curve-VP, since it often incurs low over-
head and brings optimal performance. Figure 15 presents
the average performance for these workloads on three
representative partitioning schemes. As the leftmost bars
show, with one LLCT application, all the three partition-
ing schemes bring certain amount of performance im-
provement. Curve-VP performs better than bank parti-
tioning and cache partitioning. With two LLCT applica-
tions, the thrashing effect becomes more severe in the
baseline system and all three partitioning schemes bring
much higher performance gains than the one-LLCT case.
Curve-VP performs the best, bringing a nearly 16% im-
provement over the baseline where LLCT applications
significantly interfer with LLCH/LLCM applications, and
around 4% over cache partitioning on 20 random work-
loads. With three or four LLCT applications, Curve-VP
still brings great benefits, however it performs similarly
to the cache partitioning.
 This result indicates that the performance of Curve-VP
relative to the cache partitioning in these cases (3, 4 or
more LLCT applications) is limited due to the interference
among LLCT applications and the resource constraint
(more LLCT applications are mapped into Bank Group A
in Figure 11). Although the performance gains on the
cache partitioning and Curve-VP are similar with high
number of LLCT applications, segregating LLCT applica-
tions brings an opportunity to trade the performance
among applications. Figure 16 illustrates the performance
for each application in such a typical workload (4×LLCT
+ 4×LLCH or LLCM). As can be observed in Figure 16, for
LLCH and LLCM applications (omn, mcf, sop, Xal) Curve-
VP outperforms the cache partitioning approach, but the
four LLCT applications show a worse performance on
Curve-VP than on the cache partitioning. Clearly, when
the number of LLCT applications is high, the performance
slowdown caused by LLCT applications can offset a con-
siderable portion of the benefits brought by LLCH or
LLCM applications. This inspires us that VP can be used
to balance the performance across applications, and trade
resource-sensitive applications’s performance for QoS.

7.3 Overall Performance Comparison
To demonstrate the superiority of HVR framework, we
conduct experiments to benchmark its component poli-
cies (i.e. static A/B/C-VP and the corresponding dynamic
Utility-based VP, Curve-VP), and its capability of select-

Figure 17. Performance Improvement of different schemes.
ing proper policy and enabling the coalescing and parti-
tioning rules. Static vertical partitioning (SVP) adopts A-
VP for 4-programmed workloads and B/C-VP for 8-
programmed workloads based on the PDT tree. Utility-
based VP (UVP) dynamically adjusts cache partitioning
based on cache misses monitored through hardware per-
formance counters. HVR is our comprehensive frame-
work that combines bank and vertical partitioning and
coalescing rules based on the workload composition from
SysMon. HVR enables Curve-VP when needed.
7.3.1 Dynamic Policy Selection of HVR
Figure 17 reports the performance for the three schemes
over 50 randomly generated workloads sorted by their
performance improvements achieved by SVP. In region 1,
both SVP and UVP achieve negative performance gain
(up to -5.0%) over the baseline. In contrast, HVR im-
proves performance by up to 6.1% over the baseline and
11% over SVP and UVP. A careful analysis reveals that
workloads in region 1 are primarily LLCH dominated
workloads, for which the cache partitioning is detrimental.
Thus, SVP and UVP policies are ill suited for these work-
loads. HVR achieves gains by automatically identifying
the workload characteristics and performing the bank-
only partitioning for them.

In region 2, most workloads are 8-programmed ones
with LLCT applications. HVR outperforms SVP and UVP
due to resource coalescing. For instance, the workload 22’
contains 5 LLCT, 2 LLCH and 1 LLCM applications. HVR
maps all LLCT applications to 1/8 cache, leaving the re-
maining 7/8 cache shared by LLCM and LLCH applica-
tions. The mixed partitioning and sharing improves the
performance in region 2. In most cases of region 3, HVR
outperforms other two approaches, since HVR is capable
of selecting proper VP policies and using coalescing rules.
But for some workloads, SVP performs slightly better
(0.4% better than HVR on average). Looking into the
workloads in this region we find a high percentage of
A/B-VP friendly workloads containing multiple LLCM
applications. Since an LLCM application requires modest
cache capacity and typically maintains a steady rate of
cache utilization. SVP is effective as it uses offline profil-
ing and partitions the cache at the beginning. It avoids
the dynamic overhead of an online method. In compari-
son, dynamic utility-based approaches incur a non-
negligible overhead [17,39] due to expensive page migra-
tion induced by page re-coloring and performance coun-
ter penalty. Fortunately, HVR avoids offline profiling

12 IEEE TRANSACTIONS ON COMPUTERS

Figure 18. Real-time performance of HVR (Curve-VP enabled).
and does not incur significant overhead due to the page-
table-based lightweight online profiling and the stable
classification approach (more details are in section 8).
7.3.2 Real-time Performance for HVR (Curve-VP)
As previously mentioned, Curve-VP is more suitable for a
dynamically changing workload, where new jobs may be
submitted for execution and existing jobs may terminate
at any time. Figure 18 reports the real-time performance
for cache-only partitioning, bank partitioning and HVR
(with Curve-VP enabled), measured in IPC using Intel
processor’s performance counters.
 During testing, we inject applications of various cate-
gories at random time points. Previously launched appli-
cation can stop running during the testing period. To
make a fair comparison, the injection time points, the ap-
plication input parameters and the input sequence are the
same for all three schemes as well as for the baseline.
From the figure, we can see the performance of cache par-
titioning fluctuates between 18% and -5%.
 At the sampled time points 21~30, the performance
gain of cache partitioning drops below zero. This is be-
cause at these points LLCH applications are launched,
and the performance degrades due to a mixed effect of
limited cache resources and bank-level contention. HVR
(with Curve-VP enabled) can avoid this degradation by
mapping the LLCH applications to isolated sub-bank
groups and allowing them to use a large cache space (See
Section 5). At the sampled time point 17, HVR achieves
the peak IPC improvement. This is the point where 2
LLCT and 4 LLCH/LLCM applications are running to-
gether. Curve-VP achieves the best performance among
the three schemes, by mapping LLCT applications into
small number of cache sets, allocating a larger cache space
for LLCH/LLCM applications, and isolating all applica-
tions at DRAM bank level. Curve-VP incurs little over-
head as it directly uses the pre-determined optimal map-
ping approach, and the page migrations only involve the
hot pages.
 Compared to Curve-VP, bank/cache-only partitioning
approaches achieve modest gains (5% and 7% worse than
HVR, respectively) due to the inability to vary policies
and coalesce resources dynamically, and the high re-
source migration overhead. Note that bank-only parti-
tioning achieves relatively stable performance over time
compared with cache-only partitioning and this trend is
consistent with our conclusion in Section 3 (see Figure 3).

Figure 19. Performance of multi-threaded workloads.
7.3.3 Performance for Multi-threaded Applications
As previously mentioned, performance benefits can be
achieved for multi-threaded workloads by adopting a
random, interleaved page allocation approach. In Figure
19, we show the random-interleaved page allocation pol-
icy outperforms B/C-VP policies for various 8-threaded
workloads. HVR supports random-interleaved page allo-
cation (see Section 5, Section 6.2, and Figure 7), which is
automatically selected for a multi-threaded workload
based on the policy decision tree (PDT).

8 DISCUSSION
(1) Overhead of HVR. Overhead of HVR comes from the
following three sources: 1). Page table sampling of JOB1
and JOB2 in the workload classification process. The costs
of page table traversal depend on an application’s
memory footprint. In our experiments, the time for page
table traversal ranges from 5μs (povray) to 4.46ms (mcf).
Thus, the amortized overhead of JOB1 and JOB2 are neg-
ligible. Moreover, JOB2’s sampling interval grows with an
increasing step once it collects sufficient information to
complete the initial classification process, and thus its
overhead is further reduced for long running workloads.
In the worst case, JOB2 only adds 0.6% overhead. For
workloads with an extremely large memory footprint,
random sampling can be adopted for a tradeoff between
the sampling overhead and classification accuracy. 2). The
page indexing in the modified buddy system. As our
page searching routine can allocate a page in O(1) time in
common cases, x-buddy system incurs a negligible over-
head (< 0.1% on average) during page allocation. 3). Page
migrations caused by re-coloring in dynamic policy ad-
justment. Migrating a 4KB page costs around 3μs on our
platform. Fortunately, VP does not incur too many page
migrations because it relies on stable classification infor-
mation that typically changes only when an application
starts or terminates. Moreover, since our mechanism uses
the lazy page migration [17] that only migrates a page
when necessary (the “hot” ones), the average overhead is
less than 0.8% (1.7% at most in one extreme case). HVR
performs better than the previous Utility-based ap-
proaches, in which the number of migrated pages fluctu-
ates over time and incurs a higher migration overhead in
practice. In Curve-VP, the page migration overhead is the
lowest with the dynamically changing workload due to
the fact that the allocator has the full knowledge of the
memory mapping and uses the pre-determined, highly
efficient, “ballooning” allocation. In our future work, we
will try DMA to further reduce the overhead.
(2) Using Dedicated Region for CCF applications? Our
results indicate that CCF applications should use dedicat-

LEI LIU ET AL.: RETHINKING MEMORY MANAGEMENT IN MODERN OPERATING SYSTEM: HORIZONTAL, VERTICAL OR RANDOM? 13

ed region in certain cases, but share the same space with
LLCH and LLCM applications in other cases. For 4-
programmed workloads with/without LLCT applications,
we found that, on average, the performance degradation
(compared to single thread run) for CCF applications is
only 1~3%, compared to 5~10% (w/o LLCT) and 10~40%
(w/LLCT) for LLCH/LLCM applications. In other words,
using a shared region for CCF, LLCM, and LLCH applica-
tions does not harm CCF performance significantly. Thus,
allow LLCM and LLCH to use a larger space together
with CCF increases more performance benefits. However,
if more applications are running (e.g., 8-programmed
workload) and CCF applications dominate a workload
(more than half of the applications are CCF in the work-
load), it is beneficial to segregate CCF from other types of
applications. This is because the accumulated perfor-
mance lost seen by CCF applications (CCF may suffers
10~30% performance lost on average) may offset the ben-
efits brought by cache sharing among LLCH, LLCM and
CCF. Our HVR framework can detect this case and segre-
gate CCF applications as needed. Additionally, HVR pro-
vides interfaces to users to tune its performance by using
empirical parameters, experiences, and offline knowledge.
(3) Industry Impact and Future Direction. The benefits of
vertical memory management to industrial world are
multifold. 1). It adds both cache and DRAM into the OS
management pool, and thus potentially benefits the over-
all system performance by simultaneously reducing cache
and DRAM contention, a critical problem faced by cloud
providers such as Amazon, Google and VMware. 2). It
significantly enlarges the memory management policy
space and brings greater flexibility for diverse application
needs in commercial data center and production envi-
ronments. Moreover, application memory access and us-
age patterns are captured using a practical, page-table
sampling. 3). It should also reduce the energy cost and
access latency of emerging non-volatile memories
(NVMs). In particular, memory-partitioning techniques
are useful for NVMs where row buffer miss latency and
energy cost is high. 4). It segregates applications with
high latency-sensitivity from those with high bandwidth-
sensitivity (e.g., streaming applications), thus ensuring
better QoS and fairness via throtting the resource utiliza-
tion. 5). Our partitioning and coalescing techniques can
be used together to handle dynamic workload changes in
production environments, thus having a broad influence
on efficient resource isolation, virtualization and consoli-
dation, which are critical and have a significant impact on
the trend of “moving to the cloud”. 6). Our work demon-
strates that applications, systems, architectures and
hardware can be more tightly coupled together for a more
flexible design and optimization space. It reveals the
trend that the hardware and software vendors are work-
ing closer with each other to pave the way of delivering
truly software-defined, application-aware computer sys-
tem and hardware.
 By restructuring the buddy system slightly, we imple-
ment the HVR framework as an all-in-one solution that
combines horizontal, vertical partitioning and random
allocation. We believe our prototype demonstrates the

feasibility of a more intelligent memory management
strategy in modern OS design for addressing the emerg-
ing challenges in future complicated computing envi-
ronments. It requires only a minimal effort to port our
prototype to production settings to support diverse com-
mercial workloads.

9 RELATED WORK
There is a large body of related work on cache and
memory allocation and partitioning. At the main memory
level, Prashanth et al. [26] proposes DRAM channel parti-
tioning that requires hardware and system modifications
to segregate data from different threads into different
channels to eliminate interference. Park et al. [27] adopt a
random allocation algorithm to scatter allocated pages to
multiple banks to avoid conflicts for multithreaded work-
loads. Liu et al. [18-20] use page-coloring to partition
DRAM banks/Channels to avoid contention of multiple
programs. Kaseridis et al. [12] propose bandwidth-aware
memory sub-system management for avoiding resource
contention. Various approaches are also proposed to
manage LLC [6,9,15-17,21,28,30,32,38]. In particular,
Qureshi et al. [28] design a utility-based cache partition-
ing scheme that allocates appropriate cache resources
based on application miss rate monitored through dedi-
cated hardware. More recently, cache partitioning is also
adopted in heterogeneous GPU-CPU architectures to
promote fair resource sharing among CPU and GPU ap-
plications [22,25], which exhibit different memory access
characteristics. Many efforts [4,10,13,17,24,36,41] classify
workloads based on hardware profiling, and then choose
appropriate scheduling policies for different classifica-
tions or create performance model for analysis. The latest
work in [3] proposes a promising cache partitioning and
sharing approach based on a recent advance in locality
theory in [37]. OS-level approaches for memory utiliza-
tion monitoring [7,8,39,40] have also been studied to as-
sist resource management.

10 CONCLUSIONS
In this paper, we try to rethink and answer the question
about best-fit memory allocation approach in modern OS.
We propose and implement a practical, unified, and effi-
cient multi-policy memory management framework
named HVR to address the challenge of allocating appro-
priate memory resources for modern diverse applications.
HVR seamlessly integrates several existing schemes and
new vertical partitioning policies by leveraging O-bits
and the page-coloring technique. Through a quantitative
study on a large quantity of experiments we verify that
HVR can automatically select appropriate policies based
on application needs and achieve 20% performance bene-
fits compared to prior allocation methods in many cases.

ACKNOWLEDGMENT
We thank the reviewers for their feedbacks. Lei Liu, Hao
Yang and Chengyong Wu are supported by the 863 Pro-
gram under grant No. 2012AA01092, 2012AA010901 and

14 IEEE TRANSACTIONS ON COMPUTERS

973 Program under grant No. 2011CB302500; the National
Natural Science Foundation (NSF) of China under grants
No. 61303051, 61202055, 60921002, 61303052, 61303053
and 61402445. Chen Ding is supported by NSF under
grant No. CNS-1319617, CCF-1116104, CCF-0963759 and
NSFC No. 61232008 and an IBM CAS Faculty Fellowship.
We would like to extend our deep thanks to Prof.
P.C.Yew and Xiaodong Zhang for their valuable com-
ments. We also thank these authors who pay attentions to
the prior version of this study, especially Zehan Cui.

REFERENCES
[1] Standard Performance Evaluation Corporation. Available from:

http://www.spec.org/cpu2006/CINT2006/.
[2] C. Bienia, S. Kumar, J.P. Singh, and K. Li. The PARSEC benchmark

suite: Characterization and architectural implications. In PACT. 2008.
[3] J. Brock, C. Ye, C. Ding, Y. Li, X. Wang, and Y. Luo. Optimal Cache

Partition-Sharing. In ICPP. 2015.
[4] D. Chandra, F. Guo, S. Kim, and Y. Solihin. Predicting Inter-Thread

Cache Contention on a Chip Multi-Processor Architecture. In HPCA.
2005.

[5] S. Cho and L. Jin. Managing distributed, shared L2 caches through
OS-level page allocation. In MICRO. 2006.

[6] H. Cook, M. Moreto, S. Bird, K. Dao, D.A. Patterson, and K. Asanovic,
A hardware evaluation of cache partitioning to improve utilization
and energy-efficiency while preserving responsiveness. In ISCA. 2013

[7] P. J. Denning, The Working Set Model for Program Behaviour. In
Commun. ACM, 1968. 11(5).

[8] X. Ding, K. Wang, and X. Zhang. SRM-buffer: an OS buffer manage-
ment technique to prevent last level cache from thrashing in multi-
cores. In EuroSys. 2011.

[9] X. Ding, K. Wang, and X. Zhang. ULCC: a user-level facility for opti-
mizing shared cache performance on multicores. In PPoPP. 2011.

[10] A. Jaleel, H.H. Najaf-Abadi, S. Subramaniam, S.C. Steely, and J. Emer,
CRUISE: cache replacement and utility-aware scheduling. In
ASPLOS.2012.

[11] M. K. Jeong, D.H. Yoon, D. Sunwoo, M. Sullivan, I. Lee, and M. Erez.
Balancing DRAM locality and parallelism in shared memory CMP
systems. In HPCA. 2012.

[12] D. Kaseridis, J. Stuecheli, J. Chen, and L.K. John. A bandwidth-aware
memory-subsystem resource management using non-invasive re-
source profilers for large cmp systems. In HPCA. 2010.

[13] Y. Kim, M. Papamichael, O. Mutlu, and M. Harchol-Balter. Thread
cluster memory scheduling: Exploiting differences in memory access
behavior. In MICRO. 2010.

[14] K. C. Knowlton, A Fast storage allocator. In Communications of the
ACM, 1996.

[15] S. Kim, D. Chandra, and Y. Solihin. Fair cache sharing and partition-
ing in a chip multiprocessor architecture. In PACT. 2004.

[16] J. Liedtke, H. Hartig, and M. Hohmuth. OS-controlled cache predict-
ability for real-time systems. In RTAS. 1997.

[17] J. Lin, Q. Lu, X. Ding, Z. Zhang, X. Zhang, and P. Sadayappan. Gain-
ing insights into multicore cache partitioning: Bridging the gap be-
tween simulation and real systems. In HPCA. 2008.

[18] L. Liu, Z. Cui, M. Xing, Y. Bao, M. Chen, and C. Wu. A software
memory partition approach for eliminating bank-level interference in
multicore systems. In PACT. 2012.

[19] L. Liu, Z. Cui, Y. Li, et al. BPM/BPM+: Software-based Dynamic
Memory Partitioning Mechanisms for Mitigating DRAM Bank-
/Channel-level Interferences in Multicore Systems. In TACO. 2014.

[20] L. Liu, Y. Li, Z. Cui, et al. Going Vertical in Memory Management:
Handling Multipolicity by Multi-Policy. In ISCA. 2014.

[21] Y. Li, R. Melhem, A. K. Jones. Practically Private: Enabling High
Performance CMPs Through Comiler-assisted Data Classification. In
PACT. 2012.

[22] J. Lee and H. Kim. TAP: A TLP-aware cache management policy for a
CPU-GPU heterogeneous architecture. In HPCA. 2012.

[23] W. Mi, X. Feng, J. Xue, and Y. Jia. Software-hardware cooperative
DRAM bank partitioning for chip multiprocessors. In NPC. 2010.

[24] L. Ma, K. Agrawal, R D. Chamberlain. A Memory Access Model for
Highly-threaded Many-core Architecture. In Future Generation
Computer Systems. 2014.

[25] L. Ma, K. Agrawal, R. D. Chamberlain. Theoretical Analysis of Classic
Algorithms on Highly-threaded Many-core GPUs. In Proceedings of

19rd ACM SIGPLAN Symposium on Principles and Practice of Paral-
lel Programming (PPoPP), Feb 2014.

[26] S. P. Muralidhara, L. Subramanian, O. Mutlu, M. Kandemir, and T.
Moscibroda. Reducing memory interference in multicore systems via
application-aware memory channel partitioning. In MICRO. 2011.

[27] H. Park, S. Baek, J. Choi, D. Lee, and S.H. Noh, Regularities consid-
ered harmful: forcing randomness to memory accesses to reduce row
buffer conflicts for multi-core, multi-bank systems, In ASPLOS. 2013.

[28] M. K. Qureshi and Y. N. Patt. Utility-based cache partitioning: A low-
overhead, high-performance, runtime mechanism to partition shared
caches. In MICRO. 2006.

[29] S. Rixner, W.J. Dally, U.J. Kapasi, P. Mattson, and J.D. Owens.
Memory access scheduling. In ISCA. 2000.

[30] T. Sherwood, B. Calder, and J. Emer. Reducing cache misses using
hardware and software page placement. In ICS. 1999.

[31] L. Soares, D. Tam, and M. Stumm. Reducing the harmful effects of
last-level cache polluters with an OS-level, software-only pollute
buffer. In MICRO. 2008.

[32] S. Srikantaiah, M. Kandemir, and Q. Wang. Sharp control: controlled
shared cache management in chip multiprocessors. In MICRO. 2009.

[33] D. Tam, R. Azimi, L. Soares, and M. Stumm. Managing shared L2
caches on multicore systems in software. In WIOSCA. 2007.

[34] A. S. Tanenbaum, Modern Operating Systems. 3rd ed. 2008: Pearson-
Prentice Hall.

[35] A. Wolfe. Software-based cache partitioning for real-time applications.
In RCS. 1993.

[36] Y. Xie and G. Loh. Dynamic classification of program memory be-
haviors in CMPs. In the 2nd Workshop on Chip Multiprocessor
Memory Systems and Interconnects. 2008.

[37] X. Xiang, C. Ding, H. Luo, and B. Bao. HOTL: a Higher Order Theory
of Locality. In ASPLOS. 2013.

[38] Y. Xie and G. H. Loh. Scalable shared-cache management by contain-
ing thrashing workloads. In HiPEAC. 2010.

[39] X. Zhang, S. Dwarkadas, and K. Shen. Towards practical page color-
ing-based multicore cache management. In EuroSys. 2009.

[40] P. Zhou, V. Pandey, J. Sundaresan, A. Raghuraman, Y. Zhou, and S.
Kumar. Dynamic tracking of page miss ratio curve for memory man-
agement. In ASPLOS. 2004.

[41] S. Zhuravlev, S. Blagodurov, and A. Fedorova. Addressing shared
resource contention in multicore processors via scheduling. In
ASPLOS. 2010.

Lei Liu received the Ph.D in Advanced Compilation System Group in
State Key Laboratory of Computer Architecture (SKL), Institute of
Computing Technology (ICT), and Chinese Academy of Science.
Before He joined ICT, he spent several years in industry after receiv-
ing MS degree in University of Science and Technology of China,
and BS degree in Dalian University and Technology. His research
interests are in high performance memory system, OS design, and
the optimization/evaluation for modern computer architectures. As a
leading author, his efforts are published in ISCA, PACT, TACO and
IEEE TC. He is a member of the IEEE Computer Society.

Yong Li received the PhD degree in computer engineering from
University of Pittsburgh in 2013. His research interests include
highperformance computer architectures, compilers, and parallel
systems. He is currently a Member of Technical Staff at VMware PA.
CA, US, and some of his efforts are published in ISCA, PACT,
ISLPED, TACO, IEEE TC and TPDS, etc.

Chen Ding is a Full Professor at University of Rochester, USA. His
research includes locality theory and optimization and has received
young investigator awards from NSF and DOE. He co-founded the
ACM SIGPLAN Workshop on Memory System Performance and
Correctness (MSPC).

Hao Yang graduated from Nanjing University of Technology with BS
degree in Computer Science. He is a research assistant in SKL un-
der the supervision of Prof. Chenggang Wu and Lei Liu. His research
interestings are in “Computing in Memory”, and modern OS design.

Chengyong Wu was a Full Professor in ICT, CAS. His research
spans instruction-level parallelizing compilation, parallel program-
ming model and language, and iterative and adaptive optimization.
He has served as PC member of several international conferences
like PLDI, CGO, ICPP, HPCC, etc, and some of his efforts are pub-
lished in ISCA, ASPLOS, PLDI, PACT, TACO, FPGA, etc.

