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The University of Rochester

● Small private research 
university

● 6400 undergraduates
● 4800 graduate students
● Set on the Genesee River 

in Western New York 
State, near the south 
shore of Lake Ontario

● 250km by road from 
Toronto; 590km from 
New York City
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The Computer Science Dept.
● Founded in 1974
● 20 tenure-track faculty; 

70 Ph.D. students
● Specializing in AI, 

theory, HCI, and parallel 
and distributed systems

● Among the best small 
departments in the US
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Fast Nonvolatile Memory
● NVM is on its way: PCM (Intel Optane), ReRAM, 

STT-MRAM, ...
» Could just treat these as dense, low-power DRAM 

replacements
» Tempting to put some long-lived data “in memory,” 

rather than serializing to the file system
» (Could also consider full-system persistence — not 

the topic of this talk.)
● Raises issues of
★ Correctness in the wake of a crash
» Safety with buggy or untrusted programs
» System design for persistent segments
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Outline
● Formal framework for persistency [DISC’16]

» High level semantics — durable linearizability
» Hardware memory model — explicit epoch persistency

● Incremental persistence
» Mechanical conversion of (correct) transient nonblocking object 

into a (correct) persistent one
» Methodology to prove safety for more general objects

● Reducing the frequency of fences
» JUSTODO [ASPLOS’16] and iDO logging [MICRO’18]

● Safety with buggy or untrusted programs — Themis [ATC’19]

● System design for persistent segments
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Out-of-Order Write-back

● Danger that q will persist before *p
» Have to explicitly force data to memory in order

● Need to define how we want the program to behave
» Safety criteria

● Need to understand how hardware behaves
» Persistency model

● Need to map the program to the hardware
» Automatic transform
» Manual design principles and proof techniques

p = new node();
q->next = p;
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Linearizability [Herlihy & Wing 1987]

● Standard safety criterion for transient objects
● Concurrent execution H guaranteed to be equivalent 

(same invocations and responses, inc. arguments) to 
some sequential execution S that respects

1. object semantics (legal)
2. “real-time” order (res(A) <H inv(B)  ⇒ A <S B)

(subsumes per-thread program order)

● Need an extension for persistence
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Durable Linearizability
[Izraelevitz et al., DISC’16]

● Execution history H is durably linearizable iff
1. It’s well formed (no thread survives a crash) and
2. It’s linearizable if you elide the crashes

● But that requires every op to persist before returning
● Want a buffered variant
● H is buffered durably linearizable iff for each inter-crash era

Ei we can identify a consistent cut Pi of Ei’s real-time order 
such that P0... Pi-1 Ei is linearizable ∀0 ≤ i ≤ c, where c is the 
number of crashes.
» That is, we may lose something at each crash, but what's left makes 

sense.  (Again, buffering may be in HW or in SW.)
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Proving Code Correct

● Need to show that all realizable instruction histories are 
equivalent to legal abstract (operation-level) histories.

● For this we need to understand the hardware memory 
model, which determines which writes may be seen by 
which reads.

● And that model needs extension for persistence.
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Memory Model Background
● Sequential consistency: memory acts as if there were a total 

order on all loads and stores across all threads.
» Conceptually appealing, but only IBM z still supports it.

● Relaxed models: separate ordinary and synchronizing accesses.
» Within a thread, ordinary accesses ordered wrt synchronizing accesses.
» Synchronizing accesses ordered across threads.
» Transitive closure defines happens-before relationship.
» A read will see the most recent write on a happens-before path, or a write 

that is not ordered by happens-before.

● None of this addresses persistence.
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Persistence Instructions
● Explicit write back (“pwb”); persistence fence (“pfence”); 

persistence sync (“psync”) — idealized.
● We assume E1 persists before E2 if

» they’re in the same thread and
– E1 = pwb & E2 ∈ {pfence, psync}
– E1 ∈ {pfence, psync} and E2 ∈ {pwb, st, st_rel}
– E1, E2 ∈ {st, st_rel, pwb} and access the same location
– E1 ∈ {ld, ld_acq}, E2 = pwb, and access the same location
– E1 = ld_acq and E2 ∈ {pfence, psync}

» they’re in different threads and
– E1 = st_rel, E2 = ld_acq, and E1 synchronizes with E2.



MLS 16

Explicit Epoch Persistency
● With persistence, the reads-see-writes relationship must 

be augmented to allow returning a value persisted prior 
to a recent crash.
» In an era ending with a crash, at most one write of each 

location will be “the” persisted write.  HW guarantees that these 
represent a consistent cut of the persists-before order.  All are 
said to happen before everything in the next era.

» Then, as usual, a read will see the most recent write on a 
happens-before path, or a current-era write that is not ordered 
by happens-before.

● How do we ensure that a structure is consistent after a 
crash?
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Post-crash Usability

● Sufficient but not necessary condition:
» If we can guarantee that persists-before is consistent 

with happens-before, then a nonblocking structure 
will always be usable.

» Also, a blocking structure will be usable if undo or 
redo logging allows us to roll back or forward to a 
critical section boundary.
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Incremental Persistence
● Mechanical transform:

st → st; pwb
st_rel → pfence; st_rel; pwb
ld_acq → ld_acq; pwb; pfence
cas → pfence; cas; pwb; pfence
ld → ld

● Can prove: if the original code is DRF and linearizable, the 
transformed code is durably linearizable.
» Key is the ld_acq rule.

● If original code is nonblocking, recovery process is null.
● But not all stores have to be persisted!

» Elimination/combining, announce arrays for wait freedom, ...
» (This is the “but not necessary” part.)
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Linearization Points

● Every operation “appears to happen” at some individual 
instruction, somewhere between its call and return.

● Proofs commonly leverage this formulation.
» In lock-based code, could be pretty much anywhere.
» In simple nonblocking operations, often at a distinguished CAS.

● In general, linearization points
» may be statically known.
» may be determined by each operation dynamically.
» may be reasoned in retrospect to have happened.
» (may be executed by another thread!)
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Persist Points
● (Sufficient, weaker, but still not necessary) proof-writing 

strategy.
● Implementation is (buffered) durably linearizable if

1. somewhere between linearization point and response, all stores 
needed to "capture" the operation have been pwb-ed and pfence-d;

2. whenever M1 & M2 overlap, linearization points can be chosen 
such that either M1’s persist point precedes M2’s linearization 
point, or M2’s linearization point precedes M1’s linearization point.

● NB: nonblocking persistent objects need helping: if an op 
has linearized but not yet persisted, its successor in 
linearization order must be prepared to push it through to 
persistence.
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Fewer Fences

● Writes-back aren’t expensive: waiting for them is.
● Want to do a bunch of writes between fences.
● iDO logging: leverage idempotent regions.
● Periodic persistence: leverage functional 

persistence (history preserving updates).
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JUSTDO Logging
[Izraelevitz et al, ASPLOS’16]

● Designed for a machine with nonvolatile caches.
● Goal is to assure the atomicity of (lock-based) 

failure-atomic sections (FASEs).
● Prior to every write, log (to cache) the PC and the 

location and value to be written.
● Don’t keep data in registers during a FASE.
● In the wake of a crash, execute the remainder of 

any interrupted FASE.
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iDO Logging
[With Qingrui Liu, Se Kwon Lee, Sam Noh, & Changhee Jung]

● JUSTDO logging is (perhaps) fast enough to use 
with nonvolatile caches (less than an order of 
magnitude  slowdown of FASEs), but not with 
volatile caches (2 orders of magnitude).

● Key observation: programs have idempotent 
regions that are 10s or 100s of instructions.

● Key idea: do JUSTDO logging at i-region boundaries
● On recovery, complete each interrupted FASE, 

starting at beginning of interrupted i-region.
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Themis: Protected Libraries

● Traditional file system protects metadata.
● Mmap-ed persistent (meta)data creates new 

vulnerabilities.
» Buggy programs lead to Byzantine faults.
» (Even in the absence of a malicious adversary.)

● Division between data and metadata also fuzzy
» Consider integrity of hash chains in memcached.
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Ensuring (meta)
data integrity

● Want to allow only trusted library to
access protected (persistent) data.

● Themis system [Usenix ATC’19]:
» Leverage Intel PKU mechanism
» Change protections when crossing into/out of library
» Prevent spurious use of WRPKRU instruction via compiler help, 

binary scanning/rewriting, and/or use of debug registers

● Future work:
» Killer apps: high throughput devices, in-core databases, window 

system — cf. work on microkernels
» Tolerance of/recovery from independent failures

app
data

persistent
data

app

lib
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Other Ongoing Work

● More optimized, nonblocking persistent objects.
● Integration of persistence and transactional 

memory.
● Nonblocking persistent heap management.
● “Systems” issues — replacing (some) files with 

persistent segments.
» What are (cross-file) pointers?
» Can we peruse without the creating programs?

● Integration w/ distribution (is this even desirable?)
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