
Systems Support for
Persistent ‘In-Memory’ Data

Michael L. Scott

www.cs.rochester.edu/research/synchronization/

Institute of Computing Technology
Chinese Academy of Sciences, May 2019

Joint work with Joseph Izraelevitz, Hammurabi Mendes,
Faisal Nawab, Terrence Kelly, Charles Morrey, Dhruva Chakrabarti,

Virendra Marathe, Qingrui Liu, Se Kwon Lee, Sam Noh, and
Changhee Jung

MLS 2

The University of Rochester

● Small private research
university

● 6400 undergraduates
● 4800 graduate students
● Set on the Genesee River

in Western New York
State, near the south
shore of Lake Ontario

● 250km by road from
Toronto; 590km from
New York City

MLS 4

The Computer Science Dept.
● Founded in 1974
● 20 tenure-track faculty;

70 Ph.D. students
● Specializing in AI,

theory, HCI, and parallel
and distributed systems

● Among the best small
departments in the US

MLS 5

Fast Nonvolatile Memory
● NVM is on its way: PCM (Intel Optane), ReRAM,

STT-MRAM, ...
» Could just treat these as dense, low-power DRAM

replacements
» Tempting to put some long-lived data “in memory,”

rather than serializing to the file system
» (Could also consider full-system persistence — not

the topic of this talk.)
● Raises issues of
★ Correctness in the wake of a crash
» Safety with buggy or untrusted programs
» System design for persistent segments

MLS 6

Outline
● Formal framework for persistency [DISC’16]

» High level semantics — durable linearizability
» Hardware memory model — explicit epoch persistency

● Incremental persistence
» Mechanical conversion of (correct) transient nonblocking object

into a (correct) persistent one
» Methodology to prove safety for more general objects

● Reducing the frequency of fences
» JUSTODO [ASPLOS’16] and iDO logging [MICRO’18]

● Safety with buggy or untrusted programs — Themis [ATC’19]

● System design for persistent segments

MLS 7

The Consistency Challenge

…

DRAM NVM

memory

I/O

Core

Cache

Core

Cache

Disk
SSD

MLS 8

The Consistency Challenge

…

Loads &
Stores

DRAM NVM

Core

Cache

Core

Cache

Disk
SSD

File System
Reads & Writes

MLS 9

The Consistency Challenge

…

DRAM NVM

Core

Cache

Core

Cache

Disk
SSDTransient

Persistent

Consistent

MLS 10

Out-of-Order Write-back

● Danger that q will persist before *p
» Have to explicitly force data to memory in order

● Need to define how we want the program to behave
» Safety criteria

● Need to understand how hardware behaves
» Persistency model

● Need to map the program to the hardware
» Automatic transform
» Manual design principles and proof techniques

p = new node();
q->next = p;

MLS 11

Linearizability [Herlihy & Wing 1987]

● Standard safety criterion for transient objects
● Concurrent execution H guaranteed to be equivalent

(same invocations and responses, inc. arguments) to
some sequential execution S that respects

1. object semantics (legal)
2. “real-time” order (res(A) <H inv(B) ⇒ A <S B)

(subsumes per-thread program order)

● Need an extension for persistence

MLS 12

Durable Linearizability
[Izraelevitz et al., DISC’16]

● Execution history H is durably linearizable iff
1. It’s well formed (no thread survives a crash) and
2. It’s linearizable if you elide the crashes

● But that requires every op to persist before returning
● Want a buffered variant
● H is buffered durably linearizable iff for each inter-crash era

Ei we can identify a consistent cut Pi of Ei’s real-time order
such that P0... Pi-1 Ei is linearizable ∀0 ≤ i ≤ c, where c is the
number of crashes.
» That is, we may lose something at each crash, but what's left makes

sense. (Again, buffering may be in HW or in SW.)

MLS 13

Proving Code Correct

● Need to show that all realizable instruction histories are
equivalent to legal abstract (operation-level) histories.

● For this we need to understand the hardware memory
model, which determines which writes may be seen by
which reads.

● And that model needs extension for persistence.

MLS 14

Memory Model Background
● Sequential consistency: memory acts as if there were a total

order on all loads and stores across all threads.
» Conceptually appealing, but only IBM z still supports it.

● Relaxed models: separate ordinary and synchronizing accesses.
» Within a thread, ordinary accesses ordered wrt synchronizing accesses.
» Synchronizing accesses ordered across threads.
» Transitive closure defines happens-before relationship.
» A read will see the most recent write on a happens-before path, or a write

that is not ordered by happens-before.

● None of this addresses persistence.

MLS 15

Persistence Instructions
● Explicit write back (“pwb”); persistence fence (“pfence”);

persistence sync (“psync”) — idealized.
● We assume E1 persists before E2 if

» they’re in the same thread and
– E1 = pwb & E2 ∈ {pfence, psync}
– E1 ∈ {pfence, psync} and E2 ∈ {pwb, st, st_rel}
– E1, E2 ∈ {st, st_rel, pwb} and access the same location
– E1 ∈ {ld, ld_acq}, E2 = pwb, and access the same location
– E1 = ld_acq and E2 ∈ {pfence, psync}

» they’re in different threads and
– E1 = st_rel, E2 = ld_acq, and E1 synchronizes with E2.

MLS 16

Explicit Epoch Persistency
● With persistence, the reads-see-writes relationship must

be augmented to allow returning a value persisted prior
to a recent crash.
» In an era ending with a crash, at most one write of each

location will be “the” persisted write. HW guarantees that these
represent a consistent cut of the persists-before order. All are
said to happen before everything in the next era.

» Then, as usual, a read will see the most recent write on a
happens-before path, or a current-era write that is not ordered
by happens-before.

● How do we ensure that a structure is consistent after a
crash?

MLS 17

Post-crash Usability

● Sufficient but not necessary condition:
» If we can guarantee that persists-before is consistent

with happens-before, then a nonblocking structure
will always be usable.

» Also, a blocking structure will be usable if undo or
redo logging allows us to roll back or forward to a
critical section boundary.

MLS 18

Incremental Persistence
● Mechanical transform:

st → st; pwb
st_rel → pfence; st_rel; pwb
ld_acq → ld_acq; pwb; pfence
cas → pfence; cas; pwb; pfence
ld → ld

● Can prove: if the original code is DRF and linearizable, the
transformed code is durably linearizable.
» Key is the ld_acq rule.

● If original code is nonblocking, recovery process is null.
● But not all stores have to be persisted!

» Elimination/combining, announce arrays for wait freedom, ...
» (This is the “but not necessary” part.)

MLS 19

Linearization Points

● Every operation “appears to happen” at some individual
instruction, somewhere between its call and return.

● Proofs commonly leverage this formulation.
» In lock-based code, could be pretty much anywhere.
» In simple nonblocking operations, often at a distinguished CAS.

● In general, linearization points
» may be statically known.
» may be determined by each operation dynamically.
» may be reasoned in retrospect to have happened.
» (may be executed by another thread!)

MLS 20

Persist Points
● (Sufficient, weaker, but still not necessary) proof-writing

strategy.
● Implementation is (buffered) durably linearizable if

1. somewhere between linearization point and response, all stores
needed to "capture" the operation have been pwb-ed and pfence-d;

2. whenever M1 & M2 overlap, linearization points can be chosen
such that either M1’s persist point precedes M2’s linearization
point, or M2’s linearization point precedes M1’s linearization point.

● NB: nonblocking persistent objects need helping: if an op
has linearized but not yet persisted, its successor in
linearization order must be prepared to push it through to
persistence.

MLS 21

Fewer Fences

● Writes-back aren’t expensive: waiting for them is.
● Want to do a bunch of writes between fences.
● iDO logging: leverage idempotent regions.
● Periodic persistence: leverage functional

persistence (history preserving updates).

MLS 22

JUSTDO Logging
[Izraelevitz et al, ASPLOS’16]

● Designed for a machine with nonvolatile caches.
● Goal is to assure the atomicity of (lock-based)

failure-atomic sections (FASEs).
● Prior to every write, log (to cache) the PC and the

location and value to be written.
● Don’t keep data in registers during a FASE.
● In the wake of a crash, execute the remainder of

any interrupted FASE.

MLS 23

iDO Logging
[With Qingrui Liu, Se Kwon Lee, Sam Noh, & Changhee Jung]

● JUSTDO logging is (perhaps) fast enough to use
with nonvolatile caches (less than an order of
magnitude slowdown of FASEs), but not with
volatile caches (2 orders of magnitude).

● Key observation: programs have idempotent
regions that are 10s or 100s of instructions.

● Key idea: do JUSTDO logging at i-region boundaries
● On recovery, complete each interrupted FASE,

starting at beginning of interrupted i-region.

MLS 24

Themis: Protected Libraries

● Traditional file system protects metadata.
● Mmap-ed persistent (meta)data creates new

vulnerabilities.
» Buggy programs lead to Byzantine faults.
» (Even in the absence of a malicious adversary.)

● Division between data and metadata also fuzzy
» Consider integrity of hash chains in memcached.

MLS 25

Ensuring (meta)
data integrity

● Want to allow only trusted library to
access protected (persistent) data.

● Themis system [Usenix ATC’19]:
» Leverage Intel PKU mechanism
» Change protections when crossing into/out of library
» Prevent spurious use of WRPKRU instruction via compiler help,

binary scanning/rewriting, and/or use of debug registers

● Future work:
» Killer apps: high throughput devices, in-core databases, window

system — cf. work on microkernels
» Tolerance of/recovery from independent failures

app
data

persistent
data

app

lib

MLS 26

Other Ongoing Work

● More optimized, nonblocking persistent objects.
● Integration of persistence and transactional

memory.
● Nonblocking persistent heap management.
● “Systems” issues — replacing (some) files with

persistent segments.
» What are (cross-file) pointers?
» Can we peruse without the creating programs?

● Integration w/ distribution (is this even desirable?)

www.cs.rochester.edu/research/synchronization/
www.cs.rochester.edu/u/scott/

