
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

iSwap: A New Memory Page Swap Mechanism for Reducing Ineffective I/O
Operations in Cloud Environments

ZHUOHAO WANG, Beihang University, China

LEI LIU*, Beihang University, China

LIMIN XIAO, Beihang University, China

This paper proposes iSwap, a new memory page swap mechanism that reduces the ineffective I/O swap operations and improves the
QoS for applications with a high priority in the cloud environments. iSwap works in the OS kernel. iSwap accurately learns the reuse
patterns for memory pages and makes the swap decisions accordingly to avoid ineffective operations. In the cases where memory
pressure is high, iSwap compresses pages that belong to the latency-critical (LC) applications (or high-priority applications) and keeps
them in main memory, avoiding I/O operations for these LC applications to ensure QoS; and iSwap evicts low-priority applications’
pages out of main memory. iSwap has a low overhead and works well for cloud applications with large memory footprints. We evaluate
iSwap on Intel x86 and ARM platforms. The experimental results show that iSwap can significantly reduce ineffective swap operations
(8.0% - 19.2%) and improve the QoS for LC applications (36.8% - 91.3%) in cases where memory pressure is high, compared with the
latest LRU-based approach widely used in modern OSes.

CCS Concepts: • Computer systems organization→ Cloud computing.

Additional Key Words and Phrases: cloud computing, page swapping, QoS

ACM Reference Format:
Zhuohao Wang, Lei Liu, and Limin Xiao. 2023. iSwap: A New Memory Page Swap Mechanism for Reducing Ineffective I/O Operations
in Cloud Environments. 1, 1 (February 2023), 23 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION

Today’s computer systems often have large-capacity memory and high-performance storage (e.g., HDD, NVMe). To tackle
the performance gap between main memory and storage, the common wisdom is to improve the performance of I/O
devices or to reduce disk I/O operations [31,32,40,41]. However, we find that the existing memory swap mechanisms (in
the context of 4KB pages in this work) in modern OSes often blindly swap out hot/active pages (i.e., the frequently used
pages), leading to unnecessary swapping in/out data pages across main memory and storage, hindering the overall system
performance. These swap operations are ineffective. Moreover, in cloud, we further find that lots of pages belonging to
the latency-critical (LC) services [14,24,38] or applications with a high priority are swapped out together with the pages
belonging to best-efforts (BE)/low-priority applications [14,24,38] with no differences. The existing swap approach evicts
the pages without the knowledge of the application features, severely impacting the QoS of LC applications. Taking the
Linux kernel with version 5.10 as an example, we find that though the swap mechanism (e.g., LRU, CLOCK [4,20,23,27])

*Corresponding author (PI): lei.liu@zoho.com; liulei2010@buaa.edu.cn. Authors’ address: Beihang University, No.37 Xueyuan Road Zhongguancun,
Haidian District, Beijing, China, 100191. Sys-Inventor Lab - https://liulei-sys-inventor.github.io.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2023 Association for Computing Machinery.
Manuscript submitted to ACM

Manuscript submitted to ACM 1

https://doi.org/XXXXXXX.XXXXXXX

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

2 Zhuohao Wang, Lei Liu, Limin Xiao.

works in some cases, a large number of hot pages are frequently swapped out of the main memory at run time. Therefore,
when applications want to use these pages again, OS has to load them from hard disks to main memory. These I/O
overheads lead to performance/QoS slowdown for many applications [11,21,40], especially the cloud applications. For
instance, in the cases where Redis in YCSB [15] has a memory footprint ranging from 2.5 GB to 30 GB on a cloud server
with 128 GB main memory, 30.7% of the pages suffer swap out, and the hot pages that will be immediately reused account
for 45.8% of all swapped pages. The LC services are widely used in cloud environments and are more sensitive to swap
I/O operations [14,24,40]. In some cases where many applications are co-located on a specific cloud server, the existing
swap mechanism swaps out memory pages belonging to LC services or applications with a high priority, but lots of
the pages that belong to BE applications or applications with a low priority are remained in the memory, negatively
affecting the QoS. The community is looking forward to a new design for the I/O swap mechanism.

To this end, we propose iSwap (intelligent Swap) in the OS kernel, a new mechanism that can conduct effective
memory swaps and avoid incorrectly swapping the will-be-used memory pages. Besides, in the cases where memory
pressure is high, iSwap compresses the pages belonging to the LC applications/high-priority applications and keeps
them in the main memory, and evicts the pages that belong to the low-priority applications. By doing so, LC services or
applications with a high priority can avoid performance loss caused by swap I/O operations, benefiting the system
QoS. During the run time, iSwap monitors the candidate pages marked as to be swapped by using the present bit in
PTEs (Page Table Entry) [4,5] and then makes the swap decisions according to the logic page-level reuse time, which
has the identical reuse characteristic and behavior to the micro-architecture level page reuse information, obtained by
monitoring the access bit in PTE and a learning-based approach. Then, iSwap doesn’t use the LRU-based swap list,
and it has a new design - a priority-based swap list, which reorganizes the swap list according to application priority
(e.g., LC services have a higher priority). iSwap swaps pages in BE/low-priority list first when memory pressure is
high, keeping pages belonging to LC services in memory and avoiding the unnecessary I/O thrashing for high-priority
applications. Additionally, for LC application pages, iSwap has a compressing cache in main memory using zswap
and compresses pages leveraging zbud [9]. Via this method, iSwap supports up to two compressed pages per page
frame in memory, further reducing the number of pages that need to be swapped out. Compared with the existing
swap mechanism in OSes (e.g., Linux, FreeBSD) [3,4,34,41], iSwap is more sensitive to memory pattern changes and can
accurately learn the memory pages’ reuse patterns, avoiding the ineffective memory swaps. Moreover, iSwap improves
the QoS for LC applications and the overall system.

To sum up, this paper makes the following contributions.
(1) We show that the widely used page swap approach blindly swaps many to-be-used hot pages out of main memory,

especially in cloud computing, where the cold and hot memory regions in small sizes are interleaved in the address
space. We further show that these ineffective I/O operations frequently happen, leading to performance losses and QoS
slowdown. We find that the reasons behind this phenomenon are multi-fold. First, the features of memory pages are
not effectively identified; thus, the swap decisions are often based on inaccurate information. Second, the core logic
(e.g., second chance LRU approach [3,4,20]) for managing active/inactive pages might be ineffective; therefore, the
promotion/demotion routine for active pages often incurs errors.

(2) We show that the candidate to-be-swapped pages belonging to applications are interleaved in the swap cache in
OS. And the existing swap approach does not know which application a specific page belongs to. So, it often blindly
swaps some pages from the LC or high-priority applications in practice out of the memory, but the pages that belong to
low-priority or BE applications remain in memory. This behavior negatively affects the QoS, as the required pages for
LC or high-priority applications have to suffer I/O swaps.
Manuscript submitted to ACM

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

iSwap: A New Memory Page Swap Mechanism for Reducing Ineffective I/O Operations in Cloud Environments 3

promotion

…… …Active List

promotion

demotion

Inactive List

Page Table A

LRU-based List

nr

page

page
page

…
page

…

…

P
h

y
s
ic

a
l P

a
g

e
s

nr = list_length >> priority. nr indicates the number of pages scanned by

the kswapd thread. The higher the priority of the LRU list, the lower the nr

value.

Page Table B

… …… … …

Page Table C Page Table D

… ……

… …

Fig. 1. The LRU-based page reclamation/swap mechanism [4].

(3) We design iSwap, a new swap mechanism in the OS kernel that conducts effective memory swap and avoids incorrect
swap operations. iSwap has a new two-phased monitoring mechanism that locates the memory swap regions and learns
the logic reuse patterns for the swap candidate pages. iSwap conducts effective swaps based on learned reuse patterns.
Furthermore, using memory compression technology (i.e., compressing cache in memory), iSwap makes the best effort to
ensure that high-priority/LC services’ pages remain in memory, improving the system QoS in cloud environments.

(4) We implement iSwap in the Linux kernel with version 5.10, and we show that iSwap performs well and exhibits a
low overhead for cloud applications. The experimental results show that iSwap outperforms the widely used swap
approach in Linux. iSwap reduces the ineffective I/O swaps by 48.9% (up to 66.8%) on average, and reduces the 99th
percentile response latency by 70.6% (up to 91.3%) for LC cloud services, on average.

2 BACKGROUND

2.1 Swap Operations

The main memory and storage systems are interactive. When a page fault occurs, the handler in the OS kernel moves
the required pages from the hard disk (storage) into the main memory. During this process, the application is stalled
until the OS’s page fault handler completes the swaps and updates the page table accordingly. In terms of swap out, the
memory capacity is not infinite, so OS needs to evoke the page reclamation routine to free pages until the number of
available pages reaches the high watermark [8]. For example, in Linux, kswapd scans the processes and tries to swap
out some cold/inactive pages in the cases where the watermark is low. However, when these pages are required again,
OS has to move them from the hard disk to memory (i.e., I/O happens), leading to performance losses in many cases
(especially for LC applications) [11,13,14,34].

2.2 The LRU-based Page Swaps

Modern OSes often use LRU-based page swap algorithms [4,20,34]. Taking Linux as an example, it has a hot/cold page
classification mechanism, and it has two LRU-based lists, i.e., the active_list and inactive_list. The active_list contains
pointers to active pages (i.e., hot pages) for all processes, and the inactive_list contains pointers to cold pages that
might be reclaimed and swapped out of memory. OS uses PG_active bit in the page to show whether the page is in
active_list or inactive_list [4,5] (the value of 1 indicates the page is in active_list). OS promotes and demotes pages
according to the pages’ hot/cold features as shown in Figure 1. OS determines whether the page is hot or cold based

Manuscript submitted to ACM

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

4 Zhuohao Wang, Lei Liu, Limin Xiao.

0 500 1000 1500 2000 2500 3000
Time (Sec)

0

1

2

3

4

5

6

Sw
ap

 T
im

es
 (K

) swap out
swap in

Fig. 2. Page swap in/out times during 3000s for Redis (30 GB).

on its current value of access_bit (the value of 1 indicates the page is accessed) in the PTE [4,5]. In Linux, a page is
marked as cold if the access_bit is 0 in two consecutive samplings (second chance algorithm [3,4]). Figure 1 shows a
typical LRU-based design in Linux. When the memory pressure of the system is high, the kernel calls kswapd to scan
LRU lists and reclaim the cold pages. kswapd reclaims the pages from the bottom of the inactive_list, as illustrated
in Figure 1. This reclamation routine uses reverse mapping to find the PTE of the page in a specific list. If a page is
considered cold (i.e., the access_bit is 0 in two consecutive samplings), OS will swap it out of the main memory. This
mechanism might work well in some cases, but it does not consider the reuse patterns for memory pages and, therefore,
cannot handle the cases when memory behaviors are random or exhibit frequent changes in practice. For instance,
as long as the access_bit is 1, the pages accessed 1 time and 1,000 times are considered as active pages without any
difference. So, some hot pages, like the page reused many times, might be put to the bottom half of the list and then
demoted to the inactive_list. Therefore, they become the candidates for swapping out. Notably, the page swap thread
only scans a portion of the address space for a specific application [4] instead of the global address space. And, the
existing approach uses a second chance algorithm, which only has pages’ access patterns in a short history. Therefore,
the existing approach inevitably increases the possibility of swapping out the hot pages.

2.3 Swap Cache

Modern OS often has a memory pool between the LRU swap list in Figure 1 and the hard disk, e.g., the swap cache in
Linux [4,9,41,42]. When swap operations happen, the to-be-swapped pages in inactive_list in the LRU list will be first
moved to the swap cache and then evicted into the hard disk via the I/O system. The LRU-based swap list in Figure 1
and the swap cache have the memory pages from all applications without knowledge of applications’ features, e.g., the
priority and which applications are more sensitive to I/O swaps. For example, on a specific cloud server using Linux,
we find that both LC and BE applications’ pages are in the swap cache; a page belonging to the LC application and
a page belonging to BE application are considered swap-out candidates without any difference, i.e., these pages will
be swapped out of main memory to disk with equal probability. Thus, in practice, we often find that the existing OS
blindly swaps LC applications’ pages to disk but keeps pages belonging to BE applications in memory, leading to severe
QoS slowdown for LC applications.

Manuscript submitted to ACM

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

iSwap: A New Memory Page Swap Mechanism for Reducing Ineffective I/O Operations in Cloud Environments 5

0x0 0x2245654e
Address Space

0

5

10

15

Lo
gi

c
R

eu
se

 T
im

e
(T

he
 u

pp
er

 li
m

it
is

 1
6)

Region 1

Region 2

cold page hot page swap times

0x448aca9c

1

2

3

4

Sw
ap

 T
im

es
(K

)

0

Fig. 3. Page reuse and swap times. Cold pages’ logic reuse time is 0 or 1 in this experiment based on empirical studies [4,20,25,36].

3 MOTIVATION

3.1 Ineffective Swap Operations are Happening

To study how the swap mechanism performs in practice, we run Redis (30 GB), Memcached (30 GB), and MySQL (30
GB) in YCSB [15,16] on a typical off-the-shelf cloud server with 128 GB DDR4 main memory and use vmstat [33] to
monitor the swap in/out pages. The OS is Linux with kernel version 5.10. Figure 2 shows that the page swap in/out
times within 3,000 seconds for Redis. This figure shows that page swaps always happen, and we further find that the
swapped-out pages contain many pages that will be used pretty soon, so OS has to swap them into the main memory
repeatedly. MySQL and Memcached exhibit similar phenomena. More details are in the following paragraphs.

Figure 3 further shows Redis’ average page-level reuse and swap times within 30 minutes. Reuse can reflect the
page’s hot/cold features, and the pages with higher reuse times can be hotter (i.e., more active) [25,35,37]. To obtain
the page-level reuse times, we use a loop to check the pages’ access_bits [25,37] (details are in Sec. 4). As the loop’s
control number is 16 in each sampling point (refer to Sec. 4), the upper bound for reuse times is 16. The x-axis shows
the address space for Redis. The left y-axis shows the logic reuse times and the right y-axis shows the times of swap
operations for memory pages. We can see that many frequently used hot pages always suffer swaps out, and these swap
operations happen frequently. As illustrated in Region 2 in Figure 3, the active pages that will be reused are swapped
out thousands of times (at the peak). Moreover, we can see that swaps frequently happen in the regions where many
hot pages and cold pages are interleaved with each other (e.g., Region 1 in Figure 3).

To study the underlying reasons, we track the page-level reuse patterns for these pages that are frequently swapped
out. For a specific page, we monitor the access_bit in PTE with a loop manner (clear and sample access_bit repeatedly)
to obtain the page-level logic reuse pattern [25,35,37]. In a specific sampling period, a page exhibiting 11011 reuse
pattern is more active (hotter) than the page that has 01000 reuse pattern. Figure 4 shows the reuse pattern for a specific
page in Redis’ address space. We can see that reuse pattern always changes tremendously. Therefore, the page swap
decisions based on the momentary state of the access_bits (e.g., Linux, Free BSD) are unreasonable. The widely used
LRU-based swap mechanisms (e.g., second chance algorithm in Linux, Free BSD [3,4]) for swapping out cold pages clear
and check the access_bits at the present moment. However, by doing so, as long as the recent value of access_bit is 0, the
page is marked as cold (swap candidate) without the consideration of its real footprints. Therefore, some will-be-used
hot pages that are with diverse reuse patterns are considered as cold ones and swapped out of memory frequently.
However, they are needed in pretty soon, and thus these ineffective swap out/in operations happen all the time as a

Manuscript submitted to ACM

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

6 Zhuohao Wang, Lei Liu, Limin Xiao.

1600 1800 2000 2200 2400
Time(Sec)

0
2
4
6
8

10
12

Lo
gi

c
R

eu
se

 ti
m

es
(T

he
 u

pp
er

 li
m

it
is

 1
6)

Fig. 4. The reuse times of a specific page in Redis’ address space.

0

100

200

300

400

Sw
ap

pe
d

Da
ta

 (M
B)

0 200 400 600 1000 1200 1400 1600800
Time (Sec)

10 1

100

101

99
th

 P
er

ce
nt

ile
 La

te
nc

y
(s

)

99th percentile Latency Swap out Swap in

Fig. 5. Page swap times and Redis’ 99th percentile latency.

result. Besides, even using the design like swap cache in OS [4,26], the ineffective swaps cannot be eliminated. This
design employs lazy reclaiming technology to avoid ineffective page swaps. Yet, it cannot avoid them at the root, as the
pages in the swap cache are from the LRU-based swap mechanism (without the considerations of reuse patterns) and
will be flushed into the disk periodically.

3.2 Swap Operations Negatively Affect QoS for LC Services

A cloud server may have many co-located LC (latency-critical) and BE (best-efforts) services (e.g., apps in Table 1) at
the same time [14,24,38]. The existing OS swap approach does not leverage the knowledge of the application features.
As a result, it often blindly swaps pages from the LC or high-priority applications in practice. These applications are
more sensitive to I/O operations. Yet, pages belonging to BE or low-priority applications remain in the main memory.
These applications are not that sensitive to I/O swaps. In a sentence, the existing swap approach leads to QoS slowdown
for LC applications. To show this phenomenon, we run a workload (i.e., hybrid workload 1 in Table 2) that has LC
and BE applications on a typical cloud server with 128 GB DDR4 memory (Sec. 6). The LC application is Redis with
40 GB memory footprint. The BE applications involve Fluidanimate (5 threads) [6] with 20 GB memory footprint and
Streamcluster [6] (10 threads) with 10 GB memory footprint. We monitor VmSwap in proc filesystem [7] to obtain
the swap in/out information for each application. Figure 5 shows how existing Linux swap mechanism performs on
Redis. Similar to the previous studies, the y-axis shows its 99th percentile response latency that reflects the QoS of LC
application, and the y-scale of latency is logarithmic [14,24,38].

In Figure 5, from time point 0 to 500, as the memory pressure is low, OS swap operations rarely occur. During this
period, Redis’ response latency is low and relative stable (i.e., QoS is acceptable). After time point 500, Redis memory
footprint increases, and OS starts to swap out pages (including the pages belonging to both LC and BE apps as mentioned
before) to the hard disk. As discussed before, the swap operations blindly evict many to-be-used hot pages to disk,
and the LC service’s pages (with high priority) are evicted together with BE applications’ pages. LC services are more
sensitive to I/O swaps, so the swaps should be used carefully. When these swapped-out pages are needed again, the OS
kernel has to migrate the required pages from the hard disk into the main memory. Redis service is stalled during this
period until the kernel completes the swap operations. Therefore, we observe clearly that the response latency of Redis
increases significantly. In Figure 5, the 99th percentile response latency increases from 0.15s to 1.2s.

We conclude that existing OS swap mechanisms do not distinguish if the to-be-swapped pages belong to LC/high-
priority or BE/low-priority applications, leading to some pages that belong to LC/high-priority applications being
swapped to disk. Such swap behaviors cause the QoS of LC/high-priority applications, which are more sensitive to I/O

Manuscript submitted to ACM

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

iSwap: A New Memory Page Swap Mechanism for Reducing Ineffective I/O Operations in Cloud Environments 7

PPM Thread

present
bit==0?

Page Presence
Monitor (PPM)

Monitor present_bit
to figure out

swapped out and
reused pages,

reserved_bit+1 to
record swap times

PRS Thread

Page Reuse Monitor
(PRM)

Regression Learning

Sleep for t seconds

0 0 … … … 1Page Table

Learn page reuse patterns
by sampling access bits

Scan pages from
PPM c times

Yes: Page is not in
main memory

Storage

Generate
reuse

pattern

Swap Cache

Pages from LC
applications

compressed in
memory

Pages from
BE

applications
swapped out

to storage

Swap out
to storage

Compressed cache
is full, evict oldest
compressed pages

to storage

tail

Active
List

tail

Inactive
List

iSwap
demote

iSwap
promote

Sampling Page Reuse
Pattern(PRS)

0

Figure out
swapped
out and
reused
pages

continually

0 0 … … … 1 0
Page

Table
1

Monitor and identify pages
swapped out

Page Fault Handler

head

head

Two compressed pages in

a single page Frame

Reverse Map

...

Compressed cache

iSwap swap
out

Swap Thread

frequent

Reuse
Pattern

iSwap swap in

Promote, demote and swap in/out
pages according to the reuse pattern list

compressed pages page frame

1

2

3

4

No: Page is
in memory

Set access bit = 1

Fig. 6. iSwap in a nutshell. The four components are kernel threads and they work in parallel. According to our experiments, the loop
control number 𝑐 is 16 and the sleep time 𝑡 is 3 seconds in PRS. These empirical thresholds can be adjusted if needed. The highlighted
parts in the dark are new designs in the OS kernel.

operations – low-speed disk, to be negatively affected.
To sum up, the current OS swap mechanism we use daily on cloud servers has two challenges to address carefully.

(1) Ineffective swaps are happening, leading to hot pages that will be used soon being swapped to disk frequently. (2)

Swap operations hinder QoS for LC services because pages belonging to diverse applications are blindly swapped without

distinction.

4 THE DESIGN OF ISWAP

4.1 iSwap in a Nutshell

To this end, we propose iSwap (intelligent Swap), a new memory swap mechanism in OS that learns to avoid ineffective
swaps that evict to-be-used hot pages and high-priority pages out of main memory. As illustrated in Figure 6, iSwap has
four key components that work in a pipe-lined way. (1) A Page Presence Monitor (PPM) that captures the page-swapping
information. (2) A Page-level logic Reuse pattern Sampling (PRS) component that learns whether a specific page will be
used. (3) A new page-swapping component that manages the pages based on the reuse patterns and conducts swaps
that avoid moving hot and will-be-used pages out. (4) A new swap cache component that distinguishes applications’
pages and applies different swap strategies – compress LC applications’ pages in the main memory and swap out BE
applications’ pages to hard disk. iSwap considers the page-level logic reuse patterns and applications’ priorities when
making swap decisions.

iSwap can effectively handle cases where the applications exhibit random memory patterns, e.g., the address space
has many interleaved small segments mixed with hot and cold pages. Moreover, iSwap can make the best efforts
to ensure high-priority/LC services’ pages are kept in memory and swaps out low-priority/BE applications’ pages
to free memory when available memory is insufficient. iSwap improves the system performance and QoS in cloud
environments. More details of our design are in the following.

4.2 Monitoring the Page Presence (PPM)

We design PPM to monitor the page presence and to locate the memory regions that suffer swaps. PPM is an online
memory page presence monitoring module in OS kernel (Figure 6). For a specific page, it monitors the present bit in
PTE. The value of 1 indicates the page is in the main memory, and 0 indicates the page is not in the main memory. When
a program accesses a page, OS tries to find its PTE in the page table and then checks the value of the present bit in the

Manuscript submitted to ACM

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

8 Zhuohao Wang, Lei Liu, Limin Xiao.

PTE. If the present bit is 0 (not in main memory), the page fault handler in OS will be triggered. PPM is in the page
fault handler, and PPM starts to work when the handler is triggered. The page fault handler calls the do_swap_page()
function to move data pages into the main memory and creates the PTEs for these pages. At this time, PPM records that
this page has been swapped in/out, adds 1 to the value kept in reserved bits 52-55 in its PTE and sets the present bit to 1
simultaneously. By doing so, during the run time, PPM marks all of the pages that have been swapped. Notably, the
value in the reserved bits indicates how many times a specific page is swapped. Using PPM, OS can learn the memory
regions that are suffering swaps in the application’s address space. We will investigate the reuse patterns for the pages
in these memory regions.

4.3 Learning Page-level Reuse Patterns (PRS)

We design PRS to learn the pages’ reuse patterns in the memory regions produced by PPM that suffer swaps. PRS is also
in the OS kernel and works cooperatively with PPM (Figure 6). Rather than random sampling approach, iSwap locates
the memory regions where swap-in/out operations happen, avoiding blind scan and reducing sampling overhead. Pages
in these memory regions are more likely to be swapped again. iSwap uses an auxiliary hash table to store the page
reuse pattern. Each page has an entry in the auxiliary hash table. The auxiliary hash table has minor impact on the
memory usage (about 9 MB data for every 1GB swapped pages). After having the swap memory regions, PRS monitors
the access_bits in PTEs for these pages in swap regions and counts the reuse patterns for the pages in a loop manner
(clear and examine access_bit in a loop). PRS clears the access_bits for the pages in the memory regions (i.e., set the
access_bits to 0 using pte_mkold()), then examines these PTEs. The pages whose access_bits are reset to 1 are marked
as reused. Using a loop, PRS can have these pages’ logic reuse times (reuse patterns). PRS sets the accumulative values
in the corresponding hash item within hash table. For example, if the loop control number is 200 in PRS, a page that
exhibits 150 on the accumulative value of access_bit has more possibilities for reuse than the page with 15 on that value.

Previous studies [25,26,37] show that 200 loops can accurately reflect the logic page-level reuse times (𝑅) for
applications, including Memcached, Redis, and MySQL, with a large memory footprint in practice, but the sampling
overhead cannot be ignored [26,37]. Reducing the learning overheads is key to making this technology practical. This
paper aims to reduce the sampling overheads without losing accuracy. We reduce the number of loops step by step
and finally find that using a regression-based estimation approach when the loop control number (𝑙) is 16, PRS can
have approximate results (𝑅) to the cases where the loop control number is 200. We define the regression function as
𝑅/200 = 𝑟/𝑙 (𝑙 is the number of loops, and 𝑟 is the reuse times for a specific page after 𝑙 loops). So, we can get 𝑅 when 𝑟
and 𝑙 (16) can be obtained with low overhead. After reducing the number of loops to 16, the time overhead of sampling
is significantly reduced by 79.6%. For instance, scanning 30 GB of memory that suffers swaps and getting their reuse
pattern, iSwap only takes around 2 seconds. Moreover, as modern cloud servers often have tens of computing cores, OS
occupies a few of them for learning/sampling during the run time is practical.

4.4 New Page Swap Mechanism

We introduce a new swap system with two-tired reuse-based page active/inactive lists. Figure 6 shows the details. The
active list contains the active pages (i.e., pages that might be touched in pretty soon according to their reuse patterns),
and the inactive list contains the candidate pages for swapping. Compared with previous swap mechanisms based on
the LRU strategy, iSwap re-organizes memory pages according to the reuse patterns obtained by PRS and finds the
swap candidates accordingly. The pages that might not be used according to reuse patterns will be swapped out of the
main memory. Note that though the page is swapped out, iSwap still keeps its reuse information in its PTE. A page that
Manuscript submitted to ACM

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

iSwap: A New Memory Page Swap Mechanism for Reducing Ineffective I/O Operations in Cloud Environments 9

might be accessed soon will be placed in the active list. Otherwise, it will be in the inactive list. Pages in each list are
sorted by their reuse values.

The active list and inactive list are reorganized according to reuse patterns. When a program attempts to use some
pages that are not in the main memory, the page fault handler is triggered to swap in these pages (step ❹ in Figure 6).
At this time, PPM is evoked to locate the memory regions that suffer swaps, and PRS learns the pages’ reuse patterns. If
the page’s reuse patterns show that the pages will be used (hot), it will be kept in the active list. If the page is in the
inactive list, it will be promoted to the active list and be placed in an appropriate position of the active list according
to its reuse value (i.e., step ❶). In terms of page eviction in inactive list, as shown in ❸, when memory reclamation is
evoked, iSwap takes the 𝑛𝑟 pages from the tail of the inactive list (i.e. 𝑛𝑟 is the number of pages to be swapped to swap
cache, calculated as 𝑛𝑟 = 𝑙𝑖𝑠𝑡_𝑙𝑒𝑛𝑔𝑡ℎ(𝐿𝑅𝑈) >> 𝑝 , where 𝑝 is priority of list [4]). In our design, the reuse value > 1 in
16 loops (Sec. 4.3) can be considered as will-be-used pages and should not be swapped out. Otherwise, the pages are
considered cold pages that will not be used in the near future. Finally, iSwap migrates these pages to the swap cache
(step ❸ in Figure 6). The length of the inactive list is about 2/3 of the length of the active list (i.e., 2/3 is an empirical
value, consistent with the Linux OS), and iSwap keeps the ratio of two lists during run time. So as shown in step ❷ in
Figure 6, iSwap demotes 𝑛 pages from the active list to the inactive list according to reuse patterns (i.e., 𝑛 is the number
of pages to be demoted to the inactive list, calculated as 𝑛 = 𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒_𝑙𝑒𝑛𝑔𝑡ℎ − 2/3 × 𝑎𝑐𝑡𝑖𝑣𝑒_𝑙𝑒𝑛𝑔𝑡ℎ).

4.5 Swapping vs. Compressing

After the reuse-based swap mechanism, we design a new swap cache mechanism (the last part in Figure 6) that caches
pages before finally moving to the hard disk. After the swap thread migrates inactive pages out of the main memory
(Sec. 4.4), these pages will be first moved to this new swap cache, as illustrated in Figure 6. The new swap cache has
different policies on handling pages from LC/high-priority applications or BE/low-priority applications, respectively.
Since LC/high-priority applications are more sensitive to I/O operations, while BE/low-priority applications (e.g., batch
services.) are not, blindly swapping out pages belonging to LC applications together with BE applications’ pages like
existing swap mechanisms leads to QoS slowdown for the LC applications (Sec. 3.2). iSwap works intelligently and
handles multiplicity by using Multi-policy. iSwap keeps LC/high-priority applications’ pages in memory and compresses
them when memory pressure is high, and iSwap evicts pages belonging to BE/low-priority applications instead of other
high-priority applications’ pages.

For a specific page, iSwap uses reverse mapping to identify the priority of the application to which the page belongs,
and then swaps pages accordingly. In our design (referring to Linux), each process has a value indicating the priority.
The lower value indicates a higher process priority. We use a priority threshold for running applications. Applications
with a priority below the threshold are considered high-priority applications. The priority threshold can be adjusted if
needed. iSwap identifies applications’ priority in the swap cache before moving pages to the hard disk.

Memory Compression. We have two considerations for the pages belonging to LC/high-priority applications. (1)
LC applications are more sensitive to swap operations. Swapping their pages to the hard disk will negatively affect
the QoS. So, we want to keep them in memory. (2) When the swap thread starts to reclaim pages, it indicates the
memory pressure of the system is high, and OS needs more free memory for running applications, especially for the LC
applications. Using zswap [9], we create a compressing cache in the main memory for LC and high-priority applications.
The capacity of the compressing cache is 10% of the total memory, and it can be adjusted manually. The compressing
cache uses zbud allocator, which can store two compressed pages in a specific page frame [9]. Figure 6 illustrates how
it works. When iSwap starts to evict pages, it compresses the pages belonging to LC applications, saving memory

Manuscript submitted to ACM

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

10 Zhuohao Wang, Lei Liu, Limin Xiao.

space for the system and avoiding I/O swaps. When LC applications need these pages again, iSwap decompresses them
without involving I/O operations. In addition, if the compressing cache is full, iSwap decompresses and evicts the oldest
compressed pages to the hard disk. Compressing cache is only available for LC/high-priority applications. iSwap evicts
other applications’ pages according to the reuse patterns only as mentioned before.

4.6 iSwap Works in OS Kernel

In summary, the four components in iSwap mentioned above work in parallel as independent threads in the kernel.
Algorithm 1 shows the overall logic of iSwap. In practice, iSwap can obtain the page-level logic reuse patterns with low
overhead and effectively avoid unnecessary swapping of pages across main memory and storage systems. Furthermore,
as I/O operations can be time-consuming in computer systems, iSwap can improve overall system performance.
Meanwhile, iSwap handles pages from diverse applications by multi-policy. Thus, in cloud environments, iSwap can
effectively reduce swap operations for LC applications and thus improve QoS. The implementation details are in the
following.

Algorithm 1: iSwap’s Working Procedure
Input: Page Tables

1 do in parallel
2 Procedure PPM //Locate memory regions suffering swap

Input: Page Tables
3 for each page fault do
4 Call 𝑑𝑜_𝑠𝑤𝑎𝑝_𝑝𝑎𝑔𝑒 () to swap in required pages;
5 Adds 1 to reserved bits in PTE to locate the swapped memory regions;
6 Procedure PRS //Learn page-level reuse pattern in memory regions produced by PPM

Input:Memory region produced by PPM
Output: Page hash table contains page-level reuse pattern

7 for every 3 seconds do
8 Add pages suffering swaps to page hash table;
9 for 𝑖 ← 0 to 16 do
10 for page in page hash table do
11 if access_bits = 1 then
12 Reuse time adds 1;
13 Clear access_bits;
14 Return page list;
15 Procedure SWAP //Swap pages according to reuse pattern

Input: Swapped page list
16 Sort pages in active/inactive list by their reuse times;
17 for each reclamation do
18 Migrate 𝑛𝑟 pages from the tail of the inactive list to swap cache;
19 Demote 𝑛 pages from active list to inactive list;
20 if page in swap cache belongs to LC apps then
21 if compressing cache is full then
22 Decompress and evict the oldest page in compressing cache to disk;
23 Compress page to compressing cache;
24 else
25 Evict page to disk;

Manuscript submitted to ACM

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

iSwap: A New Memory Page Swap Mechanism for Reducing Ineffective I/O Operations in Cloud Environments 11

Table 1. LC and BE workloads used in evaluations

Latency-Critical (LC) Workloads
Redis (v3.0.6) In-memory key-value database [19]

MySQL (v1.4.25) SQL database engine [39]
Memcached (v5.7.33) Memory object caching system [17]

Best-Effort (BE) Workloads
Fluidanimate (FA) Fluid dynamics for animation with Smoothed [6,28]
Streamcluster (SC) Online clustering of an input stream [6,30]

Canneal (CN) Simulated cache-aware annealing [6,12]
Freqmine (FM) Data Mining [6,18]

Table 2. iSwap evaluation with hybrid workloads

Workloads LC Application BE Applications
Hybrid workload 1 Redis FA, SC
Hybrid workload 2 MySQL FA, SC
Hybrid workload 3 Memcached FA, SC
Hybrid workload 4 Redis FA, SC, CN, FM
Hybrid workload 5 MySQL FA, SC, CN, FM
Hybrid workload 6 Memcached FA, SC, CN, FM

5 ISWAP IMPLEMENTATION

We implement iSwap in Linux kernel with version 5.10 with 895 LOC. PPM (Sec. 4.2) is in the kernel functions
do_swap_page (). When the page fault handler calls do_swap_page () to move data pages into the main memory, PPM
has a new function do_add_swap () to update the swap information in the reserved bits in the page’s PTE. PRS (Sec.
4.3) works cooperatively with PPM in a pipe-lined way. PRS returns swapped_ht, which is a hash table, to store the
reuse patterns for pages. We use separate chaining to resolve hash collision. The shrink_iswap_active_list () function is
used to demote pages from the active list to the inactive list. The shrink_iswap_inactive_list () function is used to swap
𝑛𝑟 pages in the inactive list. Both shrink_iswap_active_list () and shrink_iswap_list () are based on the reuse pattern
provided by swapped_ht. For the new swap cache mechanism, iSwap uses frontswap module [1], which is an interface
for storing swap pages in swap devices. iSwap registers two reclaim policies on its back end (Sec. 4.5, policies for pages
belonging to LC and BE applications, respectively). After the swap thread migrates pages to the swap cache, iSwap
uses reverse mapping similar to try_to_unmap () to get the priority (i.e., 𝑠𝑡𝑎𝑡𝑖𝑐_𝑝𝑟𝑖𝑜 ∈ [100, 139)) of applications to
which the swap-out pages belong, in the function __frontswap_store (). iSwap uses different policies to reclaim pages
based on the 𝑠𝑡𝑎𝑡𝑖𝑐_𝑝𝑟𝑖𝑜 obtained from reverse mapping. In this design, applications with 𝑠𝑡𝑎𝑡𝑖𝑐_𝑝𝑟𝑖𝑜 ∈ [100, 120) are
LC/high-priority applications. And applications with 𝑠𝑡𝑎𝑡𝑖𝑐_𝑝𝑟𝑖𝑜 ∈ [120, 139) are BE/low-priority applications. iSwap
uses zswap to manage compressed pages in the main memory and uses the 𝑐𝑟𝑦𝑝𝑡𝑜 𝑐𝑜𝑚𝑝 compress/decompress interface
[2] to interact with compressing cache.

6 EVALUATIONS

6.1 Methodology

We evaluate iSwap on a typical cloud server with Intel XEON-6330 2.0GHZ CPUs, 128 GB DDR4 3200MHZ main
memory, and an 8TB hard disk. The OS is 64-bit Ubuntu 18.04 with the kernel version 5.10. To better understand how
iSwap performs under different memory pressures, we have three memory watermarks (60 GB, 80 GB, and 100 GB) in
our experiments. Watermark is the memory threshold that OS starts to swap out inactive pages. Adjusting workload
size or memory watermark that leads to different memory pressures has the same effects in the evaluations. Table 1 has
the LC and BE applications used for evaluations. We use typical LC cloud services – Redis, MySQL, and Memcached –

Manuscript submitted to ACM

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

12 Zhuohao Wang, Lei Liu, Limin Xiao.

2

3

4

5

6

7

8

2 3 4 5 6 7 8 9 10 11
S

w
a
p

 T
im

e
s
 (

K
)

Logic Reuse Times
(The upper limit is 16)

Linux's swap out iSwap's swap out

Linux's swap in iSwap's swap in

Redis

Fig. 7. Swap operations in diverse reuse cases. The x-axis shows the cases of logic reuse time. It is from 2, indicating two reuse times.
The y-axis shows the times of swap operations in different cases of reuse time. The larger the value of the x-axis, the higher the reuse
rate of the page.

in YCSB benchmark suite [15,16] mainly with workload-A. We run YCSB mainly with heavy-tailed Zipf traffic pattern
[16,22] of read and write operations (i.e., 20% of records will be popular while 80% records will be unpopular, which
is typical in cloud server data access). In addition, we also test other traffic patterns of YCSB in Sec. 6.4 (e.g., latest,
uniform and hotspot). For the QoS, 99th percentile response latency [10,15,29] of LC applications is used as a metric.

Notably, in our evaluations, the memory footprint of LC and BE applications refers to the size of the workloads within
these applications. Therefore, at run time, the actual memory footprint of the applications is larger than the memory
footprint mentioned in this paper. During our tests, the actual memory footprint exceeds the memory watermark,
leading to swap operations. In our experiments, we evaluate iSwap in cases where several applications run together
and test iSwap for one specific application that runs in isolation.

Baseline. The swap mechanism in the Linux kernel with version 5.10 is used as the baseline. It uses the widely
deployed second chance algorithm discussed in Sec. 2 [4,10,36] and swaps pages directly to the disk.

6.2 Reducing OS swap operations

Page swaps are reduced using iSwap. Compared with the baseline, iSwap reduces the ineffective I/O swaps for
Redis, Memcached, and MySQL by 11.4%, 10.3%, and 10.7%, respectively. For swap-in, iSwap reduces 13.6%, 11.2%, and
10.6% for these applications, respectively. These phenomena show that a large number of ineffective swaps are reduced.
More details are illustrated in Figure 8. During a specific period in Figure 8, for Redis with a 75 GB memory footprint,
4.53GB of data are moved into main memory by iSwap in total, and 5.68GB of data are swapped out in total. By contrast,
without iSwap, 5.24 GB of data are moved into the main memory, and 6.41 GB of data are swapped out. We can see that
iSwap swaps fewer data by 13.6% for swap-in and 11.4% for swap-out, as it does not wrongly swap out the to-be-used
hot pages.

iSwap can handle diverse memory patterns.We show iSwap’s performance for memory pages with different
reuse patterns. After running the workload for 30 minutes, according to the value of page reuse pattern learned by
PRS, pages are classified into ten categories. As illustrated in Figure 7, when the logic reuse pattern is 6 or more,
iSwap reduces the number of pages swapped out by 15.5% and reduces the number of pages swapped in by 19.2%, on
average. When the memory system has a high pressure (will run out) and the OS has to swap out some pages with high
reuse values, iSwap can swap out fewer than baseline. In the cases where the reuse pattern is below 6, the number of

Manuscript submitted to ACM

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

iSwap: A New Memory Page Swap Mechanism for Reducing Ineffective I/O Operations in Cloud Environments 13

25

30

35

40

45

50

55

60

65

70

S
w

a
p

p
e
d

 D
a
ta

 (
1
0
0
K

B
)

Run Time (Sec)
0 300 600 900

45

55

Swap in Swap out

Average of Swap in Average of Swap out

0 300 600 900

Linux iSwap

Fig. 8. Linux vs. iSwap. The Application is Redis (75 GB).

0x0 0x3eb423bf 0x7d68477e
Address Space

0

5

10

15

Lo
gi

c
R

eu
se

 T
im

es
(T

he
 u

pp
er

 li
m

it
is

 1
6)

Region 1 Region 2 Region 3

cold page hot page swap times

0

2

4

6
Sw

ap
 T

im
es

(K
)

Fig. 9. iSwap’s Performance for Redis (35 GB).

0x0 0x3eb423bf 0x7d68477e
Address Space

0

5

10

15

Lo
gi

c
R

eu
se

 T
im

es
(T

he
 u

pp
er

 li
m

it
is

 1
6)

Region 1
Region 2

Region 3

cold page hot page swap times

0

2

4

6

Sw
ap

 T
im

es
(K

)

Fig. 10. Linux OS’ Swap Mechanism for Redis (35 GB).

swapped-in pages is also 26.3% lower than the Linux baseline. Notably, Figure 7 shows that in such cases, iSwap swaps
more pages out than the baseline by 21.9%, on average. Because iSwap can accurately locate the memory regions with
will-not-be-used pages with lower reuse values and swap them out. However, the existing swap mechanism cannot
effectively identify the memory regions with lots of cold and hot pages interleaved and thus cannot swap out these cold
pages with lower reuse values, leading to a lower number of swapped-out pages.

iSwap conducts effective swaps. We run the cloud workloads for 30 minutes. iSwap works 500 times during this
period. We have the average reuse values and the total number of swap operations during the 30 minutes. Figures 9 and
10 show the details for Redis. As illustrated in Figure 9, iSwap can accurately find and swap out the cold pages that will
not be reused pretty soon in the applications’ address space (e.g., Region 2); and the will-be-used hot pages are kept in
main memory (e.g., Region 1). Even for the memory regions in which many cold and hot pages are interleaved (e.g.,
Region 3), iSwap can work well. By contrast, the baseline mechanism does not work well. In Figure 10, it fails to find
the memory pages (regions) that should be swapped (e.g., Region 1 and 2 in Figure 10, hot pages are swapped many
times but cold pages are kept), especially in the memory regions many cold and hot pages are interleaved (e.g., Region
3). In addition, the baseline approach completely ignores Region 2 (i.e., the region that mainly contains cold pages and
should be swapped out) but swaps to-be-used pages as a result.

We further evaluate iSwap’s performance usingMemcached andMySQLwith hybrid workloads (i.e., hybrid workloads
2 and 3 in Table 2). Workload 2 has Memcached with a 40 GB memory footprint and BE applications, including
Fluidanimate (5 threads, 20 GB) and Streamcluster (10 threads, 10 GB). Workload 3 includes MySQL with a 40GB
memory footprint, and BE applications are the same as workload 2 mentioned above. We run these two workloads for
800 seconds with a memory watermark of 60 GB using iSwap and Linux. We record the average reuse values for 800

Manuscript submitted to ACM

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

14 Zhuohao Wang, Lei Liu, Limin Xiao.

0

1

2

3

4

0

5

10

15

0x0 0x5a51e000 0xb4a6e000

Sw
ap

 T
im

e
s

(K
)

Lo
gi

c
R

e
u

se
 T

im
e

s
(T

h
e

 U
p

p
e

r
lim

it
 is

 1
6

)

Address Space

cold page hot page swap �mes

(a) Memcached (40 GB) w/ iSwap

0

1

2

3

4

0

5

10

15

0x0 0x5a51e000 0xb4a6e000

Sw
ap

 T
im

e
s

(K
)

Lo
gi

c
R

e
u

se
 T

im
e

s
(T

h
e

 U
p

p
e

r
lim

it
 is

 1
6

)

Address Space

cold page hot page swap �mes

(b) Memcached (40 GB) w/ Linux

0

1

2

3

4

0

5

10

15

0x0 0x3bcd6000 0x779de000

Sw
ap

 T
im

e
s

(K
)

Lo
gi

c
R

e
u

se
 T

im
e

s
(T

h
e

 U
p

p
e

r
lim

it
 is

 1
6

)

Address Space

cold page hot page swap �mes

(c) Fluidanimate w/ iSwap

0

1

2

3

4

0

5

10

15

0x0 0x3bcd6000 0x779de000

Sw
ap

 T
im

e
s

(K
)

Lo
gi

c
R

e
u

se
 T

im
e

s
(T

h
e

 U
p

p
e

r
lim

it
 is

 1
6

)

Address Space

cold page hot page swap �mes

(d) Fluidanimate w/ Linux

0

1

2

3

4

0

5

10

15

0x0 0x23636000 0x46c9e000

Sw
ap

 T
im

e
s

(K
)

Lo
gi

c
R

e
u

se
 T

im
e

s
(T

h
e

 U
p

p
e

r
lim

it
 is

 1
6

)

Address Space

cold page hot page swap �mes

(e) Streamcluster w/ iSwap

0

1

2

3

4

0

5

10

15

0x0 0x23636000 0x46c9e000

Sw
ap

 T
im

e
s

(K
)

Lo
gi

c
R

e
u

se
 T

im
e

s
(T

h
e

 U
p

p
e

r
lim

it
 is

 1
6

)

Address Space

cold page hot page swap �mes

(f) Streamcluster w/ Linux

Fig. 11. Memcached + BE. LC and BE apps’ swapping operations. iSwap vs Linux.

seconds and the total number of swap operations for each application on its address space. Running 800 seconds is
sufficient to show iSwap performance. The experimental results are shown in Figure 11 and Figure 12. For both LC and
BE applications, iSwap can accurately find and swap out the actual cold pages, whose reuse patterns show that they
will not be reused soon in the applications’ address space. As illustrated in Figure 11-a,c and e, the swap operations
mainly happen in the address regions where cold pages are located. Based on reuse patterns, iSwap can accurately evict
cold pages for both LC and BE applications. Moreover, due to the applications’ features, iSwap swaps out more pages
belonging to BE applications. But these swapped pages are mainly in the cold memory regions (e.g., Fluidanimate in
Figure 11 and Figure 12), which has negligible impacts on the overall system performance. By contrast, the baseline
approach blindly swaps many hot pages, as discussed before. Details are illustrated in Figure 11-b,d, and f. In general,
iSwap outperforms the baseline swap mechanism used in Linux.

6.3 Run-time Details on Swap in vs. Swap out

We show how iSwap performs during the run time. We run hybrid workloads 1, 2 and 3 in Table 2. Each workload
has an LC application (i.e., Redis, MySQL, or Memcached) with a 40 GB memory footprint and BE applications, i.e.,
Fluidanimate (5 threads, 20 GB) and Streamcluster (10 threads, 10 GB). we monitor 𝑉𝑚𝑆𝑤𝑎𝑝 in 𝑝𝑟𝑜𝑐 filesystem [7] to
obtain the swapped data per second (MB/s) for each application. We show run-time swapping in and out in Figure

Manuscript submitted to ACM

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

iSwap: A New Memory Page Swap Mechanism for Reducing Ineffective I/O Operations in Cloud Environments 15

0

1

2

3

4

0

5

10

15

0x0 0x35b4c000 0x6b6ac000

Sw
ap

 T
im

e
s

(K
)

Lo
gi

c
R

e
u

se
 T

im
e

s
(T

h
e

 U
p

p
e

r
lim

it
 is

1
6

)

Address Space

cold page hot page swap �mes

(a) MySQL (40 GB) w/ iSwap

0

1

2

3

4

0

5

10

15

0x0 0x35b4c000 0x6b6ac000

Sw
ap

 T
im

e
s

(K
)

Lo
gi

c
R

e
u

se
 T

im
e

s
(T

h
e

 U
p

p
e

r
lim

it
 is

1
6

)

Address Space

cold page hot page swap �mes

(b) MySQL (40 GB) w/ Linux

0

1

2

3

4

0

5

10

15

0x0 0x3bcd6000 0x779de000
Sw

ap
 T

im
e

s
(K

)

Lo
gi

c
R

e
u

se
 T

im
e

s
(T

h
e

 U
p

p
e

r
lim

it
 is

1
6

)

Address Space

cold page hot page swap �mes

(c) Fluidanimate w/ iSwap

0

1

2

3

4

0

5

10

15

0x0 0x3bcd6000 0x779de000

Sw
ap

 T
im

e
s

(K
)

Lo
gi

c
R

e
u

se
 T

im
e

s
(T

h
e

 U
p

p
e

r
lim

it
 is

 1
6

)

Address Space

cold page hot page swap �mes

(d) Fluidanimate w/ Linux

0

1

2

3

4

0

5

10

15

0x0 0x23636000 0x46c9e000

Sw
ap

 T
im

e
s

(K
)

Lo
gi

c
R

e
u

se
 T

im
e

s
(T

h
e

 U
p

p
e

r
lim

it
 is

1
6

)

Address Space

cold page hot page swap �mes

(e) Streamcluster w/ iSwap

0

1

2

3

4

0

5

10

15

0x0 0x23636000 0x46c9e000

Sw
ap

 T
im

e
s

(K
)

Lo
gi

c
R

e
u

se
 T

im
e

s
(T

h
e

 U
p

p
e

r
lim

it
 is

1
6

)

Address Space

cold page hot page swap �mes

(f) Streamcluster w/ Linux

Fig. 12. MySQL + BE. LC and BE apps’ swapping operations. iSwap vs. Linux.

Table 3. Linux: LC and BE apps’ proportion of pages swapped out.

Linux LC proportion BE proportion
Hybrid workload 1 (Redis + BE) 67.1% 32.9%
Hybrid workload 2 (MySQL + BE) 54.3% 45.7%

Hybrid workload 3 (Memcached + BE) 64.1% 35.9%

Table 4. iSwap: LC and BE apps’ proportion of pages swapped out.

iSwap LC proportion BE proportion
Hybrid workload 1 (Redis + BE) 42.8% 57.2%
Hybrid workload 2 (MySQL + BE) 32.9% 67.1%

Hybrid workload 3 (Memcached + BE) 36.6% 63.4%

13, 14, 15 for workload 1, 2, and 3 respectively. Each figure compares the swap in/out for iSwap and the baseline. For
instance, as illustrated in (Figure 13-a/b) for LC application Redis, iSwap performs better than baseline. It reduces
the ineffective swap operations, and thus the amount of data swapped out/in is lower. During the 800 seconds, the
data swapped out are reduced by 30.7%, and the data swapped in are reduced by 82.1%, on average. As the ineffective
swap-out operations are reduced, the swap-in operations for moving those to-be-used/hot pages into the main memory
again are also significantly reduced. The same phenomena can also be observed for the BE applications in Figure 13.
In Figure 14, we also find that the data swapped out are reduced by 15.3%, and the data swapped in are reduced by

Manuscript submitted to ACM

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

16 Zhuohao Wang, Lei Liu, Limin Xiao.

0

100

200

300

400

500

0 200 400 600 800Sw
ap

 O
u

t
(M

B
/s

)

Run Time (s)

Linux Swap Out iSwap Swap Out

Redis

(a) Redis (40 GB) Swap Out

0

10

20

30

40

50

60

0 200 400 600 800

Sw
ap

 In
 (

M
B

/s
)

Run Time (s)

Linux Swap In iSwap Swap In

Redis

(b) Redis (40 GB) Swap In

0

50

100

150

200

250

300

350

0 200 400 600 800Sw
ap

 O
u

t
(M

B
/s

)

Run Time (s)

Linux Swap Out iSwap Swap Out

Fluidanimate

(c) Fluidanimate Swap Out

0

50

100

150

200

250

300

0 200 400 600 800

Sw
ap

 In
 (

M
B

/s
)

Run Time (s)

Linux Swap In iSwap Swap In

Fluidanimate

(d) Fluidanimate Swap In

0

50

100

150

200

250

300

0 200 400 600 800Sw
ap

 O
u

t
(M

B
/s

)

Run Time (s)

Linux Swap Out iSwap Swap Out

Streamcluster

(e) Streamcluster Swap Out

0

50

100

150

200

0 200 400 600 800

Sw
ap

 In
 (

M
B

/s
)

Run Time (s)

Linux Swap In iSwap Swap In

Streamcluster

(f) Streamcluster Swap In

Fig. 13. Redis + BE. LC and BE apps’ swapping at run time. iSwap vs Linux.

21.0% for LC application MySQL. In Figure 15, for Memcached, iSwap also reduces data swapped out by 73.3% and data
swapped in by 58.8%.

To further show how iSwap performs, we record the number of pages belonging to LC applications (𝑙𝑐_𝑛𝑢𝑚)
and the number of pages belonging to BE applications (𝑏𝑒_𝑛𝑢𝑚) that are actually swapped out to the hard disk
for iSwap and baseline approach, respectively. For iSwap, the swapped pages include BE applications’ pages and
LC applications’ pages that are decompressed and evicted from compressing cache (Sec. 4.5). Then, we calculate
𝐿𝐶 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑙𝑐_𝑛𝑢𝑚/(𝑙𝑐_𝑛𝑢𝑚 + 𝑏𝑒_𝑛𝑢𝑚), and 𝐵𝐸 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 is calculated as 𝑏𝑒_𝑛𝑢𝑚/(𝑙𝑐_𝑛𝑢𝑚 + 𝑏𝑒_𝑛𝑢𝑚). The two
metrics reflect iSwap’s effectiveness in keeping LC applications’ pages in memory and evicting pages belonging to
BE applications. Table 3 and 4 have the results. For LC applications, using Linux’s original swap approach, the LC
proportion for the three workloads is 67.1%, 54.3%, and 64.1%, respectively, indicating that the swapped pages belonging
to LC applications accounted for more than half of the total number of swapped pages. This is because Linux’s swap
mechanism does not distinguish pages for applications and conducts swap operations blindly. As LC applications have
a larger memory footprint, more pages belonging to LC applications are swapped as a result. By contrast, using iSwap,
the LC proportion during swapping is reduced by 24.3%, 21.4%, and 27.5% for these workloads, respectively. This is
because iSwap conducts intelligent swaps, which avoid ineffective swapping pages belonging to higher-priority LC
applications and evicting more pages from BE applications. Therefore, we can see BE proportion is increased in Table 4.

Manuscript submitted to ACM

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

iSwap: A New Memory Page Swap Mechanism for Reducing Ineffective I/O Operations in Cloud Environments 17

0
100
200
300
400
500
600
700
800

0 200 400 600 800Sw
ap

 O
u

t
(M

B
/s

)

Run Time (s)

Linux Swap Out iSwap Swap Out

MySQL

(a) MySQL (40 GB) Swap Out

0

10

20

30

40

50

0 200 400 600 800

Sw
ap

 In
 (

M
B

/s
)

Run Time (s)

Linux Swap In iSwap Swap In

MySQL

(b) MySQL (40 GB) Swap In

0

100

200

300

400

500

600

700

0 200 400 600 800Sw
ap

 O
u

t
(M

B
/s

)

Run Time (s)

Linux Swap Out iSwap Swap Out

Fluidanimate

(c) Fluidanimate Swap Out

0

50

100

150

200

250

300

0 200 400 600 800

Sw
ap

 In
 (

M
B

/s
)

Run Time (s)

Linux Swap In iSwap Swap In

Fluidanimate

(d) Fluidanimate Swap In

0

100

200

300

400

500

600

0 200 400 600 800Sw
ap

 O
u

t
(M

B
/s

)

Run Time (s)

Linux Swap Out iSwap Swap Out

Streamcluster

(e) Streamcluster Swap Out

0
20
40
60
80

100
120
140
160

0 200 400 600 800

Sw
ap

 In
 (

M
B

/s
)

Run Time (s)

Linux Swap In iSwap Swap In

Streamcluster

(f) Streamcluster Swap In

Fig. 14. MySQL + BE. LC and BE apps’ swapping at run time. iSwap vs Linux.

Memory compression. In the above experiments, for Redis in Figure 13-a, we find that iSwap starts to swap at
time point 79 and the Linux swap mechanism starts to work from time point 6. This is because iSwap compresses the
pages belonging to LC applications in its compressing cache at the beginning. When the compressing cache is full,
iSwap begins to decompress the oldest pages in compressing cache and evicts them, as discussed in Sec. 4.5. The same
phenomena also happen for MySQL and Memcached in our experiments. For MySQL in Figure 14-a, iSwap starts to swap
at time point 56, and Linux starts to swap at time point 45. In Figure 15-a, iSwap starts swapping at time point 147, while
Linux swaps at time point 14. During the 800 seconds in Figure 13, we also record how much data is compressed. For the
LC application Redis in workload 1, 25.8 GB of data is compressed, and 16.6 GB of data is decompressed. This indicates
that the compressing cache in iSwap avoids I/Os for 9.2 GB of data. For MySQL in workload 2, iSwap compresses 14.9
GB of data and decompresses 5.7 GB of data. In workload 3, 20.5 GB of data is compressed, and 13.2 GB is decompressed.

6.4 Overall QoS Benefits for Cloud Applications

To show the overall performance benefits brought by iSwap, we evaluate the QoS (the 99th percentile response latency)
for co-located LC applications. Figure 16 shows the LC applications’ QoS when using iSwap and baseline. In general,
we observe that iSwap can bring lower response latency for LC services, especially when memory pressure is high.
For Redis in Figure 16-a, at the beginning, since the memory pressure is low, the swap operations rarely happen, and

Manuscript submitted to ACM

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

18 Zhuohao Wang, Lei Liu, Limin Xiao.

0

200

400

600

800

1000

0 200 400 600 800Sw
ap

 O
u

t
(M

B
/s

)

Run Time (s)

Linux Swap Out iSwap Swap Out

Memcached

(a) Memcached (40 GB) Swap Out

0

50

100

150

200

250

0 200 400 600 800

Sw
ap

 In
 (

M
B

/s
)

Run Time (s)

Linux Swap In iSwap Swap In

Memcached

(b) Memcached (40 GB) Swap In

0
100
200
300
400
500
600
700
800

0 200 400 600 800Sw
ap

 O
u

t
(M

B
/s

)

Run Time (s)

Linux Swap Out iSwap Swap Out

Fluidanimate

(c) Fluidanimate Swap Out

0

20

40

60

80

100

120

140

0 200 400 600 800

Sw
ap

 In
 (

M
B

/s
)

Run Time (s)

Linux Swap In iSwap Swap In

Fluidanimate

(d) Fluidanimate Swap In

0

100

200

300

400

500

600

700

0 200 400 600 800Sw
ap

 O
u

t
(M

B
/s

)

Run Time (s)

Linux Swap Out iSwap Swap Out

Streamcluster

(e) Streamcluster Swap Out

0
20
40
60
80

100
120
140
160

0 200 400 600 800

Sw
ap

 In
 (

M
B

/s
)

Run Time (s)

Linux Swap In iSwap Swap In

Streamcluster

(f) Streamcluster Swap In

Fig. 15. Memcached + BE. LC and BE apps’ swapping at run time. iSwap vs Linux.

thus iSwap and the baseline perform similarly. As the system continues running, when the memory pressure increases,
iSwap outperforms the baseline. This is because when the swap mechanism starts to work, and as discussed before,
iSwap swaps out more cold pages and keeps pages belonging to LC applications in memory, avoiding the involvement
of low-speed I/O operations. As a result, Redis has a lower response latency. iSwap reduces the response latency of
LC application Redis by 73.6% on average, significantly improving the QoS for LC/high-priority application in cloud
environments. We find iSwap also reduces the response latency for other LC applications in Figure 16. For MySQL
in Figure 16-b, though the latency trend is different than Redis, iSwap reduces the response latency by 37.7%. And in
Figure 16-c, iSwap reduces the response latency by 83.4% for the LC application Memcached. Moreover, in Figure 16,
the response latency curve for the iSwap curve fluctuates less than the baseline, indicating a more stable QoS.

We further evaluate iSwap using more applications from Table 2 with diverse system configurations (OS memory
watermark with 80 GB and 100 GB). Each workload has an LC application (i.e., Redis, MySQL, and Memcached) with
a 60 GB memory footprint. Table 2 shows that Workloads 1-3 have two different BE applications, Fluidanimate (5
threads, 20 GB) and Streamcluster (10 threads, 10 GB). For workloads 4-6, we add another two BE applications, i.e.,
Canneal (5 threads, 20 GB) and Freqmine (5 threads, 5 GB). We run these workloads for 800 seconds and record the
average 99th response latency. We summarize the results in Figure 17. Generally, iSwap still works well. In the cases
where the watermark is 80 GB, for workloads 1-3, iSwap reduces response latency by 69.2%, 51.1%, and 91.3% for Redis,
MySQL, and Memcached on average, respectively. For workload 4-6, as these workloads have a larger memory footprint,
Manuscript submitted to ACM

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

iSwap: A New Memory Page Swap Mechanism for Reducing Ineffective I/O Operations in Cloud Environments 19

0 100 200 300 400 500 600 700 800

10 2

10 1

100 Redis
latency w/ Linux latency w/ iSwap

0 100 200 300 400 500 600 700 800

10 1

100

99
th

 P
er

ce
nt

ile
 L

at
en

cy
 (

s)

MySQL

0 100 200 300 400 500 600 700 800
Run Time (s)

10 1

100

101
Memcached

Fig. 16. 99th percentile response latency of LC applications. iSwap vs Linux.

0

10

20

30

40

50

60

70

workload1
Redis

workload2
MySQL

workload3
Memcached

workload4
Redis

workload5
MySQL

workload6
MemcachedA

ve
ra

ge
 9

9
th

 R
e

sp
o

n
se

La
te

n
cy

 (
m

s)

Workloads

iSwap w/ 80 GB watermark linux w/ 80 GB watermark
iSwap w/ 100 GB watermark Linux w/ 100 GB watermark

Fig. 17. Overall Performance for Cloud Applications.

response latency increase for all workloads. But iSwap still reduces the response latency of LC applications Redis,
MySQL, and Memcached by 72.5%, 55.4%, and 73.8%, respectively. For the cases where the watermark is 100 GB, we
observe the iSwap performs better. In workload 1-3, response latency is reduced by 87.7%, 53.8%, and 85.6% for Redis,
MySQL, and Memcached, respectively. As for workload 4-6, iSwap reduces response latency by 86.2%, 60.9%, and 78.7%,
respectively. We also run Redis, MySQL, and Memcached with latest, uniform, and hotspot traffic pattern respectively.
We observe similar experimental results in the experiment as mentioned above. Therefore, we conclude that iSwap
works well in diverse cases in cloud environments and performs better in cases where the memory footprint is large.

Moreover, iSwap brings around 1.8% overheads to the OS kernel. The overheads originate from OS kernel operations.
For instance, we observe from vmstat that iSwap brings additional 5.3 seconds for running kernel code when Redis
with workload-A (35 GB) runs 298.5 seconds. This extra overhead is mainly caused by PPM and PRS scanning pages.
However, the overhead is not significant, as modern servers can have more cores for OS threads, and the performance
improvements brought by iSwap overweight its kernel overheads.

Manuscript submitted to ACM

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

20 Zhuohao Wang, Lei Liu, Limin Xiao.

0

1

2

0

5

10

15

0x0 0x2da78000 0x5b4f0000

Sw
ap

 T
im

e
s

(K
)

Lo
gi

c
R

e
u

se
Ti

m
e

s
(T

h
e

 U
p

p
e

r
lim

it
 is

 1
6

)

Address Space

cold page hot page swap �mes

Fig. 18. iSwap’s performance for Redis on ARM (60 GB).

0

1

2

0

5

10

15

0x0 0x2da78000 0x5b4f0000

Sw
ap

 T
im

e
s

(K
)

Lo
gi

c
R

e
u

se
 T

im
e

s
(T

h
e

 U
p

p
e

r
lim

it
 is

 1
6

)

Address Space

cold page hot page swap �mes

Fig. 19. Linux’ paging operations for Redis on ARM (60 GB).

0

500

1000

1500

2000

0 200 400 600 800Sw
ap

 O
u

t
(M

B
/s

)

Run Time (s)

Linux Swap Out iSwap Swap Out

Fig. 20. Swap out operations on ARM. iSwap vs Linux.

0

50

100

150

0 200 400 600 800

Sw
ap

 In
 (

M
B

/s
)

Run Time (s)

Linux Swap In iSwap Swap In

Fig. 21. Swap in operations on ARM. iSwap vs Linux.

6.5 iSwap on ARM Platform

Besides the x86 platform, we also evaluate iSwap on the ARM platform. We use a typical ARM cloud server with Phytium
S2500 2.1GHZ CPUs, 128 GB DDR4 3200MHZ main memory, and a 1TB hard disk. The OS is 64-bit CentOS 8.5 with the
kernel version 5.10, which uses a 3-stage page table, and the page grain is 64KB. By contrast, the system used in our
experiments above is x86 with a 5-stage page table and 4KB page. On the x86 platform, iSwap records swapped pages
using reserved bits 52-55 in its PTE. However, the PTE format on the ARM platform is different. iSwap uses reserved
bits 12-15 in PTE to record swapped pages. We evaluate iSwap using workload 1 in Table 2. The memory watermark
in OS is 80 GB. The LC application is Redis with a 60GB memory footprint. The BE applications are Fluidanimate (5
threads, 20 GB) and Streamcluster (10 threads, 10 GB). We use the same metrics as before.

We run the workloads for 800 seconds using iSwap and Linux baseline, respectively. The experimental results for the
distributions of hot/cold pages and the swap operations are illustrated in Figure 18 and 19. On the ARM platform, as
shown in Figure 18, iSwap can accurately find and swap out the cold pages that will not be reused soon in the Redis’
address space. In Figure 19, since Linux uses the same hot/cold page classification algorithm as on the x86 platform,
Linux fails to find the memory pages that should be swapped but swapped to-be-used pages. So, we can see that iSwap
has fewer swap operations. We further show how iSwap performs during the 800-second run time. We capture the
swapped data per second (MB/s) for the overall system. We show run-time swapping in and out in Figure 20 and 21.
Figure 20 compares the swap in, and Figure 21 compares the swap out for iSwap and the baseline. Figure 20 and 21
illustrate that iSwap performs better than the baseline. iSwap can reduce ineffective swap operations. Therefore, the
amount of data swapped out/in is lower. During the 800 seconds, the data swapped in are reduced by 8.0%, and data
swapped out are reduced by 18.2%, on average, respectively.

We further evaluate QoS (the 99th percentile response latency) for Redis. Figure 22 shows the experimental results.
We observe that iSwap can bring lower response latency for LC services on the ARM platform, especially when memory
pressure is high. iSwap swaps out more cold pages and keeps pages belonging to LC applications in memory, avoiding

Manuscript submitted to ACM

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

iSwap: A New Memory Page Swap Mechanism for Reducing Ineffective I/O Operations in Cloud Environments 21

0 100 200 300 400 500 600 700 800
Run Time (s)

10 1

100
99

th
 P

er
ce

nt
ile

 L
at

en
cy

 (
s)

latency w/ Linux latency w/ iSwap

Fig. 22. 99th percentile response latency of Redis on a ARM platform. iSwap vs Linux.

the low-speed I/O operations. As a result, Redis has a lower response latency. iSwap reduces the 99th response latency
for Redis by 36.8%, on average. Moreover, we notice that compared with the benefits brought by iSwap on the x86
platform, the benefits on the ARM platform are not that significant. The underlying reason is the OS on the ARM
platform used in our experiments has a coarser page granularity (i.e., 64KB). Using a coarser page granularity decreases
the number of allocated memory pages, and a specific page can cover more memory patterns.

6.6 iSwap on NVMe SSD

In addition to the above experiments on HDD, we conduct experiments using a 1.5TB NVMe SSD equipped on the
previously used Intel platform in sections 6.1 - 6.4. Compared with HDD, NVMe SSD has a faster access speed. We run
Workload 1 in Table 2. The workload has Redis with a 40GB memory footprint and BE applications - Fluidanimate (5
threads, 20GB) and Streamcluster (10 threads, 10 GB). The memory watermark in the OS is 60 GB. We run the workload
for 800 seconds. In general, iSwap reduces data swapped in by 12.1% and data swapped out by 13.3%, exhibiting a similar
trend as on HDD. For the QoS improvement of LC application, iSwap reduces the 99th percentile latency by 47.8%, on
average. The QoS improvement on SSD is less significant than the 69.2% improvement on HDD. The reason is that
the NVMe SSD has a faster access speed than the HDD, so the overheads brought by ineffective swap operations are
mitigated. However, from another angle, the efforts and money paid on improving the storage performance are wasted
by these ineffective swap operations, which iSwap can tackle.

7 RELATEDWORK

Page classification. Many existing studies conduct memory page classification. The work in [47] monitors the access
bit to track the page miss ratio curve. The study in [43] uses a region-based sampling to trace cold pages and an adaptive
region adjustment to limit the overhead. G-swap [44] additionally tracks pages’ age histograms and sets the cold age
threshold using an ML approach. Then, it reclaims pages according to the threshold. The work in [46] introduces an
additional page flag to track cold pages. The study in [50] uses a user-space process that reads a bitmap stored in sysfs
to track cold pages. The studies in [25,26,51] also monitor the access bit to have the temperature of memory pages.
TMO [45] uses a new metric to measure the memory pressure and determines whether to swap out anonymous pages
or file pages. In this work, iSwap monitors the access bit and learns the page-level logic reuse patterns.
Page compression. The page compression mechanisms in the Linux kernel include zswap [9], zram [48] and zcache
[49]. zswap and zram compress pages in the main memory. Zswap can evict pages out to the storage when compressing
cache is full while zram compresses all the pages in the main memory. zcache only compresses file pages in the
main memory. The work in [44] swaps cold pages into a compressed in-memory pool and uses machine learning to
enforce a stable page swapping rate. The main difference between our work and [9,44,48,49] is that iSwap compresses

Manuscript submitted to ACM

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

22 Zhuohao Wang, Lei Liu, Limin Xiao.

LC/high-priority applications’ pages in the main memory and swaps out BE applications’ pages to hard disk. Therefore,
LC/high-priority applications can avoid inefficient IO swaps, benefiting their QoS. iSwap is more applicable to the cases
where LC and BE applications are co-located on a specific server.

8 CONCLUSION

Memory swap mechanism in OSes fundamentally plays an essential role in overall system performance and QoS.
The swap mechanism directly affects the throughput and QoS on cloud servers, edge devices, and mobiles. How to
design a new swap mechanism in modern OSes is still a hot topic. This paper proposes iSwap, a new memory page
swap mechanism that learns the page-level reuse features to reduce ineffective I/O swap operations. Moreover, iSwap
conducts swap operations according to the applications’ priority, compressing high-priority applications’ memory
pages and keeping them in the swap cache, evicting pages belonging to low-priority applications. We show that iSwap
performs well in cloud environments. It improves the overall system performance and QoS for LC services, especially
for the cloud platform running applications with large memory footprints and low latency requirements. Compared
with one-size-fits-all approaches, iSwap has a regression-based learning ability and intelligently enables a suitable
memory swap policy. Regarding future OS designs, in a world where hardware and applications become increasingly
complicated, making OSes intelligent can be a promising way to handle the complexity and diversity.

9 ACKNOWLEDGMENTS

We thank the reviewers, AE and EIC for their invaluable comments. We also thank the previous student members
who paid attention to this project. This work is supported by the Key-Area R&D Program of Guangdong (grant no.
2021B0101310002), NSFC (grant no. 62072432). Z. Wang is a student member in Sys-Inventor Lab led by L. Liu.

REFERENCES
[1] “Cleancache and frontswap,” https://lwn.net/Articles/386090/.

[2] “The crypto compression api,” https://docs.kernel.org/crypto.

[3] “The FreeBSD project,” https://www.freebsd.org.

[4] “The linux kernel archives,” https://www.kernel.org/.

[5] “Page table management,” https://www.kernel.org/doc/gorman/html/understand/understand006.html.

[6] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec benchmark suite: Characterization and architectural implications,” in PACT, 2008.

[7] “The /proc filesystem,” https://docs.kernel.org/filesystem/proc.html.

[8] “Tunable watermark,” https://lwn.net/Articles/422291/.

[9] “The zswap compressed swap cache,” https://lwn.net/Articles/537422/.

[10] D. Ardelean, A. Diwan, and C. Erdman, “Performance analysis of cloud applications,” in NSDI, 2018.

[11] S. Bai, H. Wan, Y. Huang, X. Sun, F. Wu, C. Xie, H.-C. Hsieh, T.-W. Kuo, and C. J. Xue, “Pipette: Efficient fine-grained reads for SSDs,” in DAC, 2022.

[12] P. Banerjee, Parallel algorithms for VLSI computer-aided design. Prentice-Hall, Inc., 1994.

[13] S. Bergman, N. Cassel, M. Bjorling, and M. Silberstein, “ZNSwap: un-Block your swap,” in USENIX ATC, 2022.

[14] S. Chen, C. Delimitrou, and J. F. Martínez, “Parties: Qos-aware resource partitioning for multiple interactive services,” in ASPLOS, 2019.

[15] B. Cooper, “YCSB: Yahoo! cloud serving benchmark.”

[16] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears, “Benchmarking cloud serving systems with ycsb,” in SoCC, 2010.

[17] B. Fitzpatrick, “Distributed caching with memcached,” Linux journal, 2004.

[18] G. Grahne and J. Zhu, “Efficiently using prefix-trees in mining frequent itemsets.” in FIMI, 2003.

[19] J. Han, E. Haihong, G. Le, and J. Du, “Survey on nosql database,” in PERCOM, 2011.

[20] S. Jiang, F. Chen, and X. Zhang, “CLOCK-Pro: An effective improvement of the CLOCK replacement,” in USENIX ATC, 2005.

Manuscript submitted to ACM

https://lwn.net/Articles/386090/
https://docs.kernel.org/crypto
https://www.freebsd.org
https://www.kernel.org/
https://www.kernel.org/doc/gorman/html/understand/understand006.html
https://docs.kernel.org/filesystem/proc.html
https://lwn.net/Articles/422291/
https://lwn.net/Articles/537422/

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

iSwap: A New Memory Page Swap Mechanism for Reducing Ineffective I/O Operations in Cloud Environments 23

[21] S. Kim and J.-S. Yang, “Optimized I/O determinism for emerging NVM-based NVMe SSD in an enterprise system,” in DAC, 2018.

[22] C. Kurumada, S. C. Meylan, and M. C. Frank, “Zipfian frequency distributions facilitate word segmentation in context,” Cognition, 2013.

[23] N. Lebeck, A. Krishnamurthy, H. M. Levy, and I. Zhang, “End the senseless killing: Improving memory management for mobile operating systems,”
in USENIX ATC, 2020.

[24] L. Liu, et al, “Intelligent resource scheduling for co-located latency-critical services: A multi-model collaborative learning approach,” in USENIX
FAST, 2023.

[25] L. Liu, et al, “Rethinking memory management in modern operating system: Horizontal, vertical or random?” in IEEE TC, 2016.

[26] L. Liu, et al, “Hierarchical hybrid memory management in OS for tiered memory systems,” in IEEE TPDS, 2019.

[27] A. Maruf, A. Ghosh, J. Bhimani, D. Campello, A. Rudoff, and R. Rangaswami, “Multi-clock: Dynamic tiering for hybrid memory systems,” in HPCA,
2022.

[28] M. Müller, D. Charypar, and M. H. Gross, “Particle-based fluid simulation for interactive applications.” in SCA, 2003.

[29] A. Ousterhout, J. Fried, J. Behrens, A. Belay, and H. Balakrishnan, “Shenango: Achieving high cpu efficiency for latency-sensitive datacenter
workloads,” in NSDI, 2019.

[30] L. O’Callaghan, N. Mishra, A. Meyerson, S. Guha, and R. Motwani, “High-performance clustering of streams and large data sets,” in ICDE, 2002.

[31] C. H. Park, I. Vougioukas, A. Sandberg, and D. Black-Schaffer, “Every walk’s a hit: making page walks single-access cache hits,” in ASPLOS, 2022.

[32] J. Park, M. Kim, M. Chun, L. Orosa, J. Kim, and O. Mutlu, “Reducing solid-state drive read latency by optimizing read-retry,” in ASPLOS, 2021.

[33] B. K. Tanaka, “Monitoring virtual memory with vmstat,” in Linux Journal, 2005.

[34] A. S. Tenenbaum, Operating Systems: Design and Implementation. Prentice-Hall, 1987.

[35] X. Xiang, C. Ding, H. Luo, and B. Bao, “HOTL: A higher order theory of locality,” in ASPLOS, 2013.

[36] J. Yang, Y. Wang, and Z. Wang, “Efficient modeling of random sampling-based LRU,” in ICPP, 2021.

[37] X. Zhang, S. Dwarkadas, and K. Shen, “Towards practical page coloring-based multicore cache management,” in EuroSys, 2009.

[38] T. Patel and D. Tiwari, “Clite: Efficient and qos-aware co-location of multiple latency-critical jobs for warehouse scale computers,” in HPCA, 2020.

[39] “MySQL Database,” https://www.mysql.com.

[40] J. L. Hennessy and D. A. Patterson, Computer architecture: a quantitative approach. Elsevier, 2011.

[41] T. Anderson and M. Dahlin, Operating Systems: Principles and Practice. Recursive books, 2014.

[42] J. H. Saltzer and M. F. Kaashoek, Principles of computer system design: an introduction. Morgan Kaufmann, 2009.

[43] Park, SeongJae, Yunjae Lee, and Heon Y. Yeom. “Profiling dynamic data access patterns with controlled overhead and quality," in Proceedings of the
20th International Middleware Conference Industrial Track, 2019.

[44] A. Lagar-Cavilla, J. Ahn, S. Souhlal, N. Agarwal, R. Burny, S. Butt, J. Chang, A. Chaugule, N. Deng, J. Shahid et al., “Software-defined far memory in
warehouse-scale computers,” in ASPLOS, 2019.

[45] J. Weiner, N. Agarwal, D. Schatzberg, L. Yang, H. Wang, B. Sanouillet, B. Sharma, T. Heo, M. Jain, C. Tang et al., “TMO: transparent memory
offloading in datacenters,” in ASPLOS, 2022.

[46] “Idle page tracking/working set estimation.,” https://lwn.net/Articles/460762/.

[47] P. Zhou, V. Pandey, J. Sundaresan, A. Raghuraman, Y. Zhou, and S. Kumar, “Dynamic tracking of page miss ratio curve for memory management,” in
ACM SIGPLAN Notices, 2004.

[48] “zram: Compressed RAM based block devices.,” https://www.kernel.org/doc/Documentation/blockdev/zram.txt.

[49] “zcache: a compressed file page cache.,” https://lwn.net/Articles/562254/.

[50] “Idle and stale page tracking.,” https://lwn.net/Articles/461461/.

[51] L. Liu, C. Wu, and X. Feng. “Memory resource optimization method and apparatus,” US Patent No. 9,857,980, 2018.

Manuscript submitted to ACM

https://www.mysql.com
https://lwn.net/Articles/460762/
https://www.kernel.org/doc/Documentation/blockdev/zram.txt
https://lwn.net/Articles/562254/
https://lwn.net/Articles/461461/

	Abstract
	1 Introduction
	2 Background
	2.1 Swap Operations
	2.2 The LRU-based Page Swaps
	2.3 Swap Cache

	3 Motivation
	3.1 Ineffective Swap Operations are Happening
	3.2 Swap Operations Negatively Affect QoS for LC Services

	4 The Design of iSwap
	4.1 iSwap in a Nutshell
	4.2 Monitoring the Page Presence (PPM)
	4.3 Learning Page-level Reuse Patterns (PRS)
	4.4 New Page Swap Mechanism
	4.5 Swapping vs. Compressing
	4.6 iSwap Works in OS Kernel

	5 iSwap Implementation
	6 Evaluations
	6.1 Methodology
	6.2 Reducing OS swap operations
	6.3 Run-time Details on Swap in vs. Swap out
	6.4 Overall QoS Benefits for Cloud Applications
	6.5 iSwap on ARM Platform
	6.6 iSwap on NVMe SSD

	7 Related Work
	8 Conclusion
	9 ACKNOWLEDGMENTS
	References

