
OSML
Intelligent Resource Scheduling for Co-located Latency-critical Services: 
A Multi-Model Collaborative Learning Approach

Lei Liu1, Xinglei Dou2 (Presenter), Yuetao Chen2

1Beihang University; 2ICT, CAS; Sys-Inventor Lab

FAST-2023

Session: AI and Storage



Executive Summary

• Runtime resource scheduling becomes the pivot for Quality of 
Service (QoS) control in complicated co-location cases.

• Challenges:
• Co-located services exhibit diverse behaviors across the storage 

hierarchy.
• Enlarging scheduling exploration space and multiple interactive 

resources make it hard for schedulers to provide ideal solutions 
quickly and efficiently.

• “Resource cliffs” (RCliff) reduces the exploration efficiency and lead to 
severe QoS fluctuations.

• Solutions:
• Data-driven approach based on extensive traces
• Collaborative ML models for intelligent scheduling

• Results:
• higher loads and shorter convergence time than prior work
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Monolithic Architecture → Loosely-coupled Design

• Cloud applications are shifting from monolithic architectures to 
loosely-coupled designs, including many latency-critical (LC) 
services with strict quality of service (QoS) requirements.
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Co-location → Contention for Shared Resources

• Co-located services exhibit diverse behaviors across the 
storage hierarchy, including multiple interactive resources 
such as CPU cores, last level cache (LLC), memory/IO 
bandwidth, and main memory banks.

• Co-located services contend for shared resources, leading to 
Quality of Service (QoS) violations.
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New Scheduling Approaches are Expected

CPU

LLC B/W

?

QoS violations

Interactive resources

• Existing schedulers still have room for 
improvement in scheduling 
convergence time, intelligence, and 
how to schedule complicated interactive 
resources in a timely fashion.

• Existing schedulers cannot easily avoid 
“resource cliffs”, i.e., decreasing a 
resource only slightly during scheduling 
leads to a significant QoS slow-down.
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Key Observations: RCliff and OAA

• Resource Cliff (RCliff): the resource allocation cases that could 
incur the most significant performance slowdown if resources 
(e.g., core, cache) are deprived of via a fine-grain way in the 
scheduling exploration space

• Optimal Allocation Area (OAA): the ideal number of allocated 
cores and LLC ways to bring an acceptable QoS

A resource scheduling exploration 

space containing 36 (#cores) * 20 

(#LLC ways) possible allocations

Each cell denotes the LC service’ s 

response latency under the given 

number of cores and LLC ways



Key Observations: RCliff and OAA

• RCliff and OAA commonly exist for many LC services.



Is OAA Sensitive to the Number of Threads?

• More threads do not necessarily bring more benefits.

• The OAA is not sensitive to the number of concurrent 
threads.

OAA exists regardless of the number of concurrent threads



• Entangling with RCliffs

• Difficulty in accurately and simultaneously scheduling a 
combination of multiple interactive resources (e.g., cores, 
LLC ways) to achieve OAAs in low overheads

• Difficulty in providing accurate QoS predictions

Issues the Existing Schedulers May Meet

Example: Existing schedulers are entangling with RCliffs

Increasing resource step 

by step in a fine-grain way

Falling off the RCliff
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OSML - a Data-driven Approach

• Data collection
• 11 representative LC services
• Common RPS demands
• 1-36 threads

• Data set from 11 typical LC services
• 62,720,264 resource allocation cases, containing around 2-billion 

samples

• Map on 1 - #Threads cores
• 1-20 LLC ways



OSML – Using ML for Resource Scheduling

• Multi-model collaborative learning approach
• Model-A: Aiming Optimal Allocation Area
• Model-B: Balancing QoS and Resources
• Model-C: Handling the Changes On the Fly

• OSML is designed as a co-worker of the OS scheduler 
located between the OS kernel and the user layer



Summary of the ML Models

outputs

Model-A

(MLP)

Model-A’

(MLP)

Model-B

(MLP)

Model-B’

(MLP)

Inputs Models

Outputs: RCliff, OAA, OAA bandwidth (for a single service) 

<RCliff cores, RCliff LLC ways, OAA cores, 

OAA LLC ways, [OAA bandwidth]>

Format:

Model-C

(DQN)

Details of the ML models

OAA, RCliff, OAA bandwidth (for co-location cases)

<RCliff cores, RCliff LLC ways, OAA cores, 

OAA LLC ways, [OAA bandwidth]>

Outputs: 
Format:

The resources that a service can be deprived of

under allowable QoS slowdown

<Cores, LLC ways>, <Cores (dominated), LLC ways>, 

<Cores, LLC ways (dominated)>

Outputs: 

Format:

How much QoS slowdown will suffer if a certain 

amount of resources is deprived of a specific service

<QoS slowdown>

Outputs: 

Format:

The scheduling actions (reducing/increasing a 

specific number of cores/LLC ways)

<Core step, LLC way step>

Outputs: 

Format:



Model-A: Aiming OAA

• Model-A predicts RCliff, OAA and OAA bandwidth.

• Model-A inputs:
• <IPC, Cache Misses, MBL, CPU Usage, Virt. Memory, Res. Memory, 

Allocated Cores, Allocated Cache, Core Frequency>

• Model-A outputs:
• <RCliff cores, RCliff LLC ways, OAA cores, OAA LLC ways, OAA 

bandwidth>

• Model-A’ is used in co-location cases.

• Model-A’ inputs:
• Input features of Model-A 
• <Cores used by neighbors, Cache used by 

neighbors, Memory BW used by neighbors>

• Model-A’ outputs:  
• Same as Model-A



Model-B: Balancing QoS and Resources

• Model-B balances the QoS and resource allocations among 
co-located LC services.

• Model-B inputs: 
• Input features of Model-A’ 
• QoS Slowdown

• Model-B outputs 3 policies as the computing 
units and memory resource can be fungible:

• <Cores, LLC ways>, <Cores (dominated), LLC 
ways>, <Cores, LLC ways (dominated)>

• Model-B’ predicts QoS slowdown if a certain amount of 
resources is deprived of a specific service.

• Model-B’ inputs:
• Input features of Model-A’
• <Cores after deprivation, 

Cache after deprivation>

• Model-B’ outputs:
• QoS slowdown



Model-C: Handling the Changes On the Fly

• Model-C shepherds the allocations and recovers from the 
QoS violation and resource over-provision cases.

• Model-C inputs:
• <IPC, Cache Misses, MBL, CPU Usage, Allocated Cores, Allocated 

Cache, Core Frequency, Response Latency>

• Action:
• {<m,n> | m ∈ [−3,3], n ∈ [−3,3]}
• m indicates the action on cores; n indicates the action on LLC ways.

• Reward:
If Latencyt−1 > Latencyt :

Rt = log(1+Latencyt−1−Latencyt)−(∆CoreNum+∆CacheWay)

If Latencyt−1 < Latencyt :

Rt = −log(1+Latencyt −Latencyt−1)−(∆CoreNum+∆CacheWay)

If Latencyt−1 = Latencyt :

Rt = −(∆CoreNum+∆CacheWay)

DQN agent

Environment

RewardStatus Action

Mitigate QoS 

violations

Minimize 

resource usage



Central Logic - Using ML Models in a Pipelined Way

• Algorithm 1: Allocating resources for a coming LC service

• Enable Model-A/A’ to get the OAA 
and RCliff

• If idle resources are sufficient to 
satisfy the new LC service, then
allocate resources to the service

• If not, enable Model-B to deprive 
resources from neighbors and 
allocate them to the new one

• Enable resource sharing if 
necessary



Central Logic - Using ML Models in a Pipelined Way

• Algorithm 2: Handling resource under-provision cases

• Call Model-C to allocate more 
resources to achieve ideal QoS

• Enable resource sharing if 
necessary



Central Logic - Using ML Models in a Pipelined Way

• Algorithm 3: Handling resource over-provision cases

• Call Model-C to reclaim over-
provisioned resources

• Withdraw the action if QoS is not 
satisfied after the deprivation



Central Logic - Using ML Models in a Pipelined Way

• Algorithm 4: Handling resource sharing among apps

• Enable Model-B’ to predict QoS 
slowdown after resource sharing

• If the slowdown is acceptable, 
share resource with neighbor

• If not, migrate the application
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Methodology

• Platform: 
• Intel Xeon E5-2697 v4, 36 logical cores (18 physical cores), 45MB LLC, 

20 LLC ways.

• Capture traces using:
• pqos tool [1] 
• PMU

• Isolation mechanisms:
• CPU cores - Linux taskset
• LLC ways - Intel Cache Allocation Technology (CAT) [1]
• Memory bandwidth - Intel Memory Bandwidth Allocation (MBA) [2]

[1] “Improving real-time performance by utilizing cache allocation technology,” https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/

cache-allocation-technology-white-paper.pdf, Intel Corporation, April, 2015.

[2] “Intel 64 and IA-32 Architectures Software Developer’s Manual,” https://software.intel.com/en-us/articles/intel-sdm, Intel Corporation, October, 2016.



Evaluations

• Metrics:
• Quality of Service (QoS, QoS target is the 99th percentile latency of the 

knee of the latency-RPS curve)
• Effective Machine Utilization (EMU, the max aggregated load of all co-

located LC services) 

• Competing approaches:
• PARTIES [1], a heuristic scheduling approach 
• CLITE [2], based on Bayesian optimizer
• Unmanaged Allocation
• ORACLE, the best allocation policy obtained by exhaustive offline 

sampling

[1] Shuang Chen, Christina Delimitrou, José F. Martínez, “PARTIES: QoS-Aware Resource Partitioning for Multiple Interactive Services,” in ASPLOS, 2019.

[2] Tirthak Patel, Devesh Tiwari, “CLITE: Efficient and QoS-Aware Co-Location of Multiple Latency-Critical Jobs for Warehouse Scale Computers,” in HPCA, 2020.



Performance Distribution

• OSML can achieve the same EMU with a shorter 
convergence time for a specific load.

• OSML converges faster mainly because the start point 
provided by Model-A is close to OAA.

(a)The performance distribution for 104 loads that 

OSML and other baselines can all converge. 

(b)Violin plots of convergence time for loads in (a).

Scheduler Average Convergence Time

OSML 20.9s

PARTIES 32.7s (1.56×OSML)

CLITE 46.3s (2.22×OSML)

OSML converges 1.56× and 2.22×
faster than the baseline approaches.



EMU Distribution

• OSML works for more loads across different EMUs, 
particularly in cases where the EMU is high (e.g., 130%~ 
180%).

EMU distribution for converged 

loads among 302 loads.

OSML, PARTIES, and CLITE works for 

94.4%, 86.1%, and 49.0% loads, respectively.

Scheduler Number of Converged loads

OSML 285 (94.4%)

PARTIES 260 (86.1%)

CLITE 148 (49.0%)

• Each resource scheduler has its own pros and cons, suited 
for different cases.



Resource Usage Comparisons

Case A: Moses, Img-dnn, and Xapian with 

40%, 60%, and 50% of their maximum loads.

Less Resource Usage: OSML saves 3 cores and 9 LLC ways, 

other baselines use all resources on the platform.



• OSML provides solutions for sharing some cores and LLC 
ways among LC services, therefore supporting higher loads.

Achieved Loads

Workload: Moses, Img-dnn, and Xapian

Case B: Moses, Img-dnn, and 

Xapian with 60%, 70%, and 20% 

of their maximum loads.

Higher Loads: OSML converges by 

sharing resources. The baselines 

can not converge for this load.



• 16s~80s: New service arrives
OSML provides better scheduling solutions at 
time point 48 for all three services. 

• 180s~228s: Img-dnn’s load increases
OSML meets Img-dnn’s changing demand with 
Model-C.

Performance for Workload Churn

Scheduling traces during 180s~228s



Generalization

• Performance for all unseen applications
• OSML converges 1.38×~1.50×faster than baselines.

• Model errors
• Errors are not significant.
• Model-A/B outputs approximate OAA, 

Model-C schedules and learns online.

• OSML is a long-term project open to the community; we 
continue adding new traces collected from new applications 
and new servers to the data set for enhancing models’ 
performance for new cases.



Conclusion

• OSML is an ML-based resource scheduler for co-located LC 
services.

• OSML uses multiple ML models cooperatively in a pipe-
lined way.

• Leveraging ML could have an immense potential for OS 
design.

• In a world where co-location and sharing are a fundamental 
reality, our solution should grow in importance and benefits 
our community.



Thank You!
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