
OSML
Intelligent Resource Scheduling for Co-located Latency-critical Services:
A Multi-Model Collaborative Learning Approach

Lei Liu1, Xinglei Dou2 (Presenter), Yuetao Chen2

1Beihang University; 2ICT, CAS; Sys-Inventor Lab

FAST-2023

Session: AI and Storage

Executive Summary

• Runtime resource scheduling becomes the pivot for Quality of
Service (QoS) control in complicated co-location cases.

• Challenges:
• Co-located services exhibit diverse behaviors across the storage

hierarchy.
• Enlarging scheduling exploration space and multiple interactive

resources make it hard for schedulers to provide ideal solutions
quickly and efficiently.

• “Resource cliffs” (RCliff) reduces the exploration efficiency and lead to
severe QoS fluctuations.

• Solutions:
• Data-driven approach based on extensive traces
• Collaborative ML models for intelligent scheduling

• Results:
• higher loads and shorter convergence time than prior work

Outline

➢Motivation

➢Study in Resource Scheduling for LC services

➢Leveraging ML for scheduling

➢Evaluations

➢Conclusion

Monolithic Architecture → Loosely-coupled Design

• Cloud applications are shifting from monolithic architectures to
loosely-coupled designs, including many latency-critical (LC)
services with strict quality of service (QoS) requirements.

Monolithic architecture

Presentation layer

Service layer

Persistence layer

Loosely-coupled design

Service A

Service B Service C

Service D Service E

Latency-critical

services

Co-location → Contention for Shared Resources

• Co-located services exhibit diverse behaviors across the
storage hierarchy, including multiple interactive resources
such as CPU cores, last level cache (LLC), memory/IO
bandwidth, and main memory banks.

• Co-located services contend for shared resources, leading to
Quality of Service (QoS) violations.

Contention in shared resources

QoS violations of

Latency-critical (LC) services

Core 1

L1/L2

Last-level Cache

Core 2

L1/L2

Core N

L1/L2

DRAM

Memory

Bandwidth

…

Service A Service B

QoS violation

New Scheduling Approaches are Expected

CPU

LLC B/W

?

QoS violations

Interactive resources

• Existing schedulers still have room for
improvement in scheduling
convergence time, intelligence, and
how to schedule complicated interactive
resources in a timely fashion.

• Existing schedulers cannot easily avoid
“resource cliffs”, i.e., decreasing a
resource only slightly during scheduling
leads to a significant QoS slow-down.

Outline

➢Motivation

➢Study in Resource Scheduling for LC services

➢Leveraging ML for scheduling

➢Evaluations

➢Conclusion

Key Observations: RCliff and OAA

• Resource Cliff (RCliff): the resource allocation cases that could
incur the most significant performance slowdown if resources
(e.g., core, cache) are deprived of via a fine-grain way in the
scheduling exploration space

• Optimal Allocation Area (OAA): the ideal number of allocated
cores and LLC ways to bring an acceptable QoS

A resource scheduling exploration

space containing 36 (#cores) * 20

(#LLC ways) possible allocations

Each cell denotes the LC service’ s

response latency under the given

number of cores and LLC ways

Key Observations: RCliff and OAA

• RCliff and OAA commonly exist for many LC services.

Is OAA Sensitive to the Number of Threads?

• More threads do not necessarily bring more benefits.

• The OAA is not sensitive to the number of concurrent
threads.

OAA exists regardless of the number of concurrent threads

• Entangling with RCliffs

• Difficulty in accurately and simultaneously scheduling a
combination of multiple interactive resources (e.g., cores,
LLC ways) to achieve OAAs in low overheads

• Difficulty in providing accurate QoS predictions

Issues the Existing Schedulers May Meet

Example: Existing schedulers are entangling with RCliffs

Increasing resource step

by step in a fine-grain way

Falling off the RCliff

Outline

➢Motivation

➢Study in Resource Scheduling for LC services

➢Leveraging ML for scheduling

➢Evaluations

➢Conclusion

OSML - a Data-driven Approach

• Data collection
• 11 representative LC services
• Common RPS demands
• 1-36 threads

• Data set from 11 typical LC services
• 62,720,264 resource allocation cases, containing around 2-billion

samples

• Map on 1 - #Threads cores
• 1-20 LLC ways

OSML – Using ML for Resource Scheduling

• Multi-model collaborative learning approach
• Model-A: Aiming Optimal Allocation Area
• Model-B: Balancing QoS and Resources
• Model-C: Handling the Changes On the Fly

• OSML is designed as a co-worker of the OS scheduler
located between the OS kernel and the user layer

Summary of the ML Models

outputs

Model-A

(MLP)

Model-A’

(MLP)

Model-B

(MLP)

Model-B’

(MLP)

Inputs Models

Outputs: RCliff, OAA, OAA bandwidth (for a single service)

<RCliff cores, RCliff LLC ways, OAA cores,

OAA LLC ways, [OAA bandwidth]>

Format:

Model-C

(DQN)

Details of the ML models

OAA, RCliff, OAA bandwidth (for co-location cases)

<RCliff cores, RCliff LLC ways, OAA cores,

OAA LLC ways, [OAA bandwidth]>

Outputs:
Format:

The resources that a service can be deprived of

under allowable QoS slowdown

<Cores, LLC ways>, <Cores (dominated), LLC ways>,

<Cores, LLC ways (dominated)>

Outputs:

Format:

How much QoS slowdown will suffer if a certain

amount of resources is deprived of a specific service

<QoS slowdown>

Outputs:

Format:

The scheduling actions (reducing/increasing a

specific number of cores/LLC ways)

<Core step, LLC way step>

Outputs:

Format:

Model-A: Aiming OAA

• Model-A predicts RCliff, OAA and OAA bandwidth.

• Model-A inputs:
• <IPC, Cache Misses, MBL, CPU Usage, Virt. Memory, Res. Memory,

Allocated Cores, Allocated Cache, Core Frequency>

• Model-A outputs:
• <RCliff cores, RCliff LLC ways, OAA cores, OAA LLC ways, OAA

bandwidth>

• Model-A’ is used in co-location cases.

• Model-A’ inputs:
• Input features of Model-A
• <Cores used by neighbors, Cache used by

neighbors, Memory BW used by neighbors>

• Model-A’ outputs:
• Same as Model-A

Model-B: Balancing QoS and Resources

• Model-B balances the QoS and resource allocations among
co-located LC services.

• Model-B inputs:
• Input features of Model-A’
• QoS Slowdown

• Model-B outputs 3 policies as the computing
units and memory resource can be fungible:

• <Cores, LLC ways>, <Cores (dominated), LLC
ways>, <Cores, LLC ways (dominated)>

• Model-B’ predicts QoS slowdown if a certain amount of
resources is deprived of a specific service.

• Model-B’ inputs:
• Input features of Model-A’
• <Cores after deprivation,

Cache after deprivation>

• Model-B’ outputs:
• QoS slowdown

Model-C: Handling the Changes On the Fly

• Model-C shepherds the allocations and recovers from the
QoS violation and resource over-provision cases.

• Model-C inputs:
• <IPC, Cache Misses, MBL, CPU Usage, Allocated Cores, Allocated

Cache, Core Frequency, Response Latency>

• Action:
• {<m,n> | m ∈ [−3,3], n ∈ [−3,3]}
• m indicates the action on cores; n indicates the action on LLC ways.

• Reward:
If Latencyt−1 > Latencyt :

Rt = log(1+Latencyt−1−Latencyt)−(∆CoreNum+∆CacheWay)

If Latencyt−1 < Latencyt :

Rt = −log(1+Latencyt −Latencyt−1)−(∆CoreNum+∆CacheWay)

If Latencyt−1 = Latencyt :

Rt = −(∆CoreNum+∆CacheWay)

DQN agent

Environment

RewardStatus Action

Mitigate QoS

violations

Minimize

resource usage

Central Logic - Using ML Models in a Pipelined Way

• Algorithm 1: Allocating resources for a coming LC service

• Enable Model-A/A’ to get the OAA
and RCliff

• If idle resources are sufficient to
satisfy the new LC service, then
allocate resources to the service

• If not, enable Model-B to deprive
resources from neighbors and
allocate them to the new one

• Enable resource sharing if
necessary

Central Logic - Using ML Models in a Pipelined Way

• Algorithm 2: Handling resource under-provision cases

• Call Model-C to allocate more
resources to achieve ideal QoS

• Enable resource sharing if
necessary

Central Logic - Using ML Models in a Pipelined Way

• Algorithm 3: Handling resource over-provision cases

• Call Model-C to reclaim over-
provisioned resources

• Withdraw the action if QoS is not
satisfied after the deprivation

Central Logic - Using ML Models in a Pipelined Way

• Algorithm 4: Handling resource sharing among apps

• Enable Model-B’ to predict QoS
slowdown after resource sharing

• If the slowdown is acceptable,
share resource with neighbor

• If not, migrate the application

Outline

➢Motivation

➢Study in Resource Scheduling for LC services

➢Leveraging ML for scheduling

➢Evaluations

➢Conclusion

Methodology

• Platform:
• Intel Xeon E5-2697 v4, 36 logical cores (18 physical cores), 45MB LLC,

20 LLC ways.

• Capture traces using:
• pqos tool [1]
• PMU

• Isolation mechanisms:
• CPU cores - Linux taskset
• LLC ways - Intel Cache Allocation Technology (CAT) [1]
• Memory bandwidth - Intel Memory Bandwidth Allocation (MBA) [2]

[1] “Improving real-time performance by utilizing cache allocation technology,” https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/

cache-allocation-technology-white-paper.pdf, Intel Corporation, April, 2015.

[2] “Intel 64 and IA-32 Architectures Software Developer’s Manual,” https://software.intel.com/en-us/articles/intel-sdm, Intel Corporation, October, 2016.

Evaluations

• Metrics:
• Quality of Service (QoS, QoS target is the 99th percentile latency of the

knee of the latency-RPS curve)
• Effective Machine Utilization (EMU, the max aggregated load of all co-

located LC services)

• Competing approaches:
• PARTIES [1], a heuristic scheduling approach
• CLITE [2], based on Bayesian optimizer
• Unmanaged Allocation
• ORACLE, the best allocation policy obtained by exhaustive offline

sampling

[1] Shuang Chen, Christina Delimitrou, José F. Martínez, “PARTIES: QoS-Aware Resource Partitioning for Multiple Interactive Services,” in ASPLOS, 2019.

[2] Tirthak Patel, Devesh Tiwari, “CLITE: Efficient and QoS-Aware Co-Location of Multiple Latency-Critical Jobs for Warehouse Scale Computers,” in HPCA, 2020.

Performance Distribution

• OSML can achieve the same EMU with a shorter
convergence time for a specific load.

• OSML converges faster mainly because the start point
provided by Model-A is close to OAA.

(a)The performance distribution for 104 loads that

OSML and other baselines can all converge.

(b)Violin plots of convergence time for loads in (a).

Scheduler Average Convergence Time

OSML 20.9s

PARTIES 32.7s (1.56×OSML)

CLITE 46.3s (2.22×OSML)

OSML converges 1.56× and 2.22×
faster than the baseline approaches.

EMU Distribution

• OSML works for more loads across different EMUs,
particularly in cases where the EMU is high (e.g., 130%~
180%).

EMU distribution for converged

loads among 302 loads.

OSML, PARTIES, and CLITE works for

94.4%, 86.1%, and 49.0% loads, respectively.

Scheduler Number of Converged loads

OSML 285 (94.4%)

PARTIES 260 (86.1%)

CLITE 148 (49.0%)

• Each resource scheduler has its own pros and cons, suited
for different cases.

Resource Usage Comparisons

Case A: Moses, Img-dnn, and Xapian with

40%, 60%, and 50% of their maximum loads.

Less Resource Usage: OSML saves 3 cores and 9 LLC ways,

other baselines use all resources on the platform.

• OSML provides solutions for sharing some cores and LLC
ways among LC services, therefore supporting higher loads.

Achieved Loads

Workload: Moses, Img-dnn, and Xapian

Case B: Moses, Img-dnn, and

Xapian with 60%, 70%, and 20%

of their maximum loads.

Higher Loads: OSML converges by

sharing resources. The baselines

can not converge for this load.

• 16s~80s: New service arrives
OSML provides better scheduling solutions at
time point 48 for all three services.

• 180s~228s: Img-dnn’s load increases
OSML meets Img-dnn’s changing demand with
Model-C.

Performance for Workload Churn

Scheduling traces during 180s~228s

Generalization

• Performance for all unseen applications
• OSML converges 1.38×~1.50×faster than baselines.

• Model errors
• Errors are not significant.
• Model-A/B outputs approximate OAA,

Model-C schedules and learns online.

• OSML is a long-term project open to the community; we
continue adding new traces collected from new applications
and new servers to the data set for enhancing models’
performance for new cases.

Conclusion

• OSML is an ML-based resource scheduler for co-located LC
services.

• OSML uses multiple ML models cooperatively in a pipe-
lined way.

• Leveraging ML could have an immense potential for OS
design.

• In a world where co-location and sharing are a fundamental
reality, our solution should grow in importance and benefits
our community.

Thank You!

Lei Liu1, Xinglei Dou2, Yuetao Chen2

1Beihang University; 2ICT,CAS; Sys-Inventor Lab

https://liulei-sys-inventor.github.io/

	幻灯片 1: OSML Intelligent Resource Scheduling for Co-located Latency-critical Services: A Multi-Model Collaborative Learning Approach
	幻灯片 2: Executive Summary
	幻灯片 3: Outline
	幻灯片 4: Monolithic Architecture → Loosely-coupled Design
	幻灯片 5: Co-location → Contention for Shared Resources
	幻灯片 6: New Scheduling Approaches are Expected
	幻灯片 7: Outline
	幻灯片 8: Key Observations: RCliff and OAA
	幻灯片 9: Key Observations: RCliff and OAA
	幻灯片 10: Is OAA Sensitive to the Number of Threads?
	幻灯片 11: Issues the Existing Schedulers May Meet
	幻灯片 12: Outline
	幻灯片 13: OSML - a Data-driven Approach
	幻灯片 14: OSML – Using ML for Resource Scheduling
	幻灯片 15: Summary of the ML Models
	幻灯片 16: Model-A: Aiming OAA
	幻灯片 17: Model-B: Balancing QoS and Resources
	幻灯片 18: Model-C: Handling the Changes On the Fly
	幻灯片 19: Central Logic - Using ML Models in a Pipelined Way
	幻灯片 20: Central Logic - Using ML Models in a Pipelined Way
	幻灯片 21: Central Logic - Using ML Models in a Pipelined Way
	幻灯片 22: Central Logic - Using ML Models in a Pipelined Way
	幻灯片 23: Outline
	幻灯片 24: Methodology
	幻灯片 25: Evaluations
	幻灯片 26: Performance Distribution
	幻灯片 27: EMU Distribution
	幻灯片 28: Resource Usage Comparisons
	幻灯片 29: Achieved Loads
	幻灯片 30: Performance for Workload Churn
	幻灯片 31: Generalization
	幻灯片 32: Conclusion
	幻灯片 33: Thank You!

