
Efficient GPU NVRAM Persistence with Helper Warps

Sui Chen*, Faen Zhangϯ, Lei Liu‡, Lu Peng*
*Louisiana State University, ϯAinnovation Technology Ltd.

‡SKLCA, Institute of Computing Technology, Chinese Academy of Sciences

{csui1, lpeng}lsu.edu, zhangfaen@ainnovation.com, liulei2010@ict.ac.cn

ABSTRACT

Non-volatile Random-Access Memories (NVRAM) have emerged

in recent years to bridge the performance gap between the main

memory and external storage devices. To utilize the non-volatility

of NVRAMs, programs should allow durable stores, meaning

consistency must be maintained during a power loss event. GPUs

are designed with high throughput, leveraging high degrees of

parallelism. However, with lower NVRAM write bandwidths

compared to that of DRAMs, using NVRAM as is may yield sub-

optimal overall system performance. To address this problem, we

propose using Helper Warps to move persistence out of the criti-

cal path of transaction execution, alleviating the impact of laten-

cies. Our mechanism achieves a speedup of 4.4 and 1.5 under

bandwidth limits of 1.6 GB/s and 12 GB/s and is projected to

maintain speed advantage even when NVRAM bandwidth gets as

high as hundreds of GB/s in certain cases.

KEYWORDS

Non-volatile Random-Access Memories, GPU, Persistence, Help

Warps.

1. Introduction

Non-volatile Random-Access Memory (NVRAM) has emerged

and has been maturing in the past few years as a promising re-

placement for the DRAM. With its large capacity and durability,

NVRAMs can enable and justify new programming paradigms

such as transactional memory.

 A byte-addressable, durable storage device such as NVRAM

may be used in a few different ways. In the simplest form, it may

be used as a large-capacity, drop-in replacement for the DRAM or

the cache. This type of system has been discussed on both the

CPU and GPU [1] but does not leverage its durability property.

Another more sophisticated approach is to use the NVRAM as a

persistent data store, making it an integral part of a transaction

processing system (TPS). The architecture of a TPS usually in-

volves two layers: a concurrency protocol layer, which may be

embodied as a transactional memory or a locking mechanism, is

responsible for detecting and resolving conflicts between transac-

tions; and a logging layer that performs writes in the form of jour-

nal logs to achieve durability that can maintain data integrity dur-

ing a power loss event. On the CPU, such TPS systems can in-

volve hardware and software; the GPU is steps behind the CPU,

as there exists works on transactional memory but not TPS sys-

tems based on NVRAM at the current moment.

 Despite its larger storage density, NVRAM provides less

bandwidth than DRAM and the cache. Therefore, bandwidth-

induced latency needs to be managed well to avoid performance

degradation. Software and hardware approaches are needed to

alleviate the penalty induced by the bandwidth gap.

In this paper, we make the following contributions:

• To the best of our knowledge, we propose the first efficient

and easy-to-use transaction processing system that uses

NVRAM storage on GPUs in this paper.

• We propose the use of Helper Warps that utilize spare com-

pute power on the GPU to alleviate the write bandwidth lim-

it.

• We establish a mechanism that can adaptively enable the

Helper Warps to achieve the best performance under differ-

ent program behaviors.

2. Related Work

Transactional Memory (TM) [2] is a key technique for enabling

OLTP workloads involving concurrent reads and writes on the

GPU. Both hardware-based (HTM) and software-based (STM)

systems have been proposed on the GPU. Software systems [3, 4]

utilize various GPU-centric optimizations that to utilize the GPU’s

parallel processing power to perform basic tasks in the TM system

in parallel, such as lock management, and coalesced read and

write log access, and using GPU-friendly data layout such as

structures-of-arrays instead of arrays-of-structures. With these

efforts combined, the GPU-based STM systems can rival or even

outperform CPU-based STM systems.

 For hardware approaches [5, 6, 7], these proposals feature

hardware-implemented TM algorithms, as well as new hardware

architectures that provide new versioning techniques and new

conflict detection mechanisms.

 For efficient use of NVRAM on the CPU, DudeTM [8] and

ATOM [9] achieve high write/persistence performance by decou-

pling, i.e. by performing the persistence step outside the critical

path. These systems mainly focused on CPUs. NV-Heaps [10]

discusses the interoperation between the NVRAM and DRAM are

used simultaneously. Kiln [11] proposes to add non-volatile cach-

es and form a multi-versioned persistent system.

 NVRAM has also been considered for enhancing existing GPU

cache and memory subsystem. A recent work [12] discerns access

patterns and manages hybrid DRAM and NVRAM accordingly.

Due to NVRAM having only a fraction of the bandwidth of that of

the DRAM, hybrid designs need to be adopted to alleviate the

bandwidth gap [1, 13]. The existing work do not utilize persis-

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distrib-

uted for profit or commercial advantage and that copies bear this notice and the full

citation on the first page. Copyrights for components of this work owned by others

than ACM must be honored. Abstracting with credit is permitted. To copy other-

wise, or republish, to post on servers or to redistribute to lists, requires prior specif-

ic permission and/or a fee.Request permissions from Permissions@acm.org.

DAC '19, June 2–6, 2019, Las Vegas, NV, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6725-7/19/06…$15.00

https://doi.org/10.1145/3316781.3317810

tence. In contrast, we will support persistence for NVRAM using

in GPUs in this paper.

3. Limited NVRAM Bandwidth on GPUs

Figure 1: Impact of bandwidth on execution time.

Today’s NVRAM devices deliver lower bandwidth than that of

DRAMs. This performance gap may be observed in 4K block

operations utilizing either technology, with one of today’s high-

end NVRAM devices delivering 500K write I/O operations per

second (IOPS) [17], significantly lower than the 3,000K write

IOPS of RAM disks in the same PCI-E interface [18]. Recent

researches achieved aggregate bandwidths ranging from several

GB/s to tens of GB/s [19]. Especially, the Intel PMFS offers two

options for aggregate NVRAM bandwidth: 9.5 GB/s and 37 GB/s.

This is in the same ballpark as that of the current 3D XPoint

commercial products [15] which have a write bandwidth of 6

GB/s.

 The bandwidths illustrated above are both lower than a state-of-

the-art GPU, the NVIDIA GTX 1080Ti or AMD Vega 64, both at

484 GB/s. As a motivating example, we run a few benchmarks

with bandwidth limits enforced on their persistent store. The im-

pact of bandwidth limits on bandwidth-bound transaction pro-

cessing workloads is easily visible: the total program running time

will become several times (up to 15x) longer compared with high-

er bandwidth system, as shown in Figure 1.

 We have observed that a transactional program consists of three

stages, execute, commit and persist. The persist step is more

memory-constrained than the other two stages, with some com-

pute resources rendered idle while waiting for memory accesses.

Fortunately, by performing the persist step asynchronously, over-

lapping it with the other stages, the impact of bandwidth limit and

the latency may be greatly mitigated or even eliminated. In this

paper, we design and implement a software-based approach for

this purpose. The idea can also be expanded to hardware-based

design.

4. Efficient GPU NVRAM Persistence Support

NVRAM provides data durability, and is usually used with a log-

ging mechanism for consistency. Just like a file system that is set

up on top of a disk or SSD, logging enables error-correction and

maintains data consistency in power outage events. In various

logging implementations, writes are first buffered into logs (called

“persist”) and then used to evolve the system state stored in the

NVRAM (called “reproduce”). Log generation usually requires a

certain concurrency control mechanism in place to resolve con-

flicts between participating transactions. For this purpose, a soft-

ware/hardware transactional memory (STM/HTM), or an equiva-

lent (such as two-phase locking) is usually used to work with the

logging system and combined as a transaction processing system.

4.1 Transaction Processing

Transaction processing usually consists of two parts, concurrency

control and persistence logging. The system we investigate in this

paper uses Software Transactional Memory (STM) for concurren-

cy control. Our STM algorithm employs eager conflict detection

and redo-logging and resolves conflicts with global ownership

records. The granularity of write/read set tracking is a 32-bit ma-

chine word. Accesses to data of larger sizes are treated as multiple

32-bit machine words. This algorithm does not distinguish be-

tween read and write. Conflicts are resolved by favoring transac-

tions with a lower thread ID.

 The structure of the TM algorithm, from the transaction’s point

of view, is described in Figure 2. When a transaction TA performs

a transactional read or a write (Line 1), it first attempts to take the

ownership record for the corresponding machine word. When

there are no other transactions holding this ownership record

(Line 4), the current transaction takes ownership with an atomic

compare-and-swap (CAS) (Line 5). The usage of CAS guarantees

that when there are multiple transactions attempting to take own-

ership, only one would succeed. The situation when another trans-

action TB already owns this ownership record (Line 3) is called a

conflict, which must be resolved by aborting one of the transac-

tions: if TA’s thread ID is smaller than TB’s, TA may preempt this

ownership record and signal TB to abort (Line 10), which is also

done with an atomic CAS. If TB and TA are the same transaction

nothing needs to be done (Line 14). Otherwise, TA must abort

itself (Line 16). This global ordering of priority prevents deadlock

and ensures system-wide progress. Implementation-wise, because

it’s difficult to directly send signals to individual threads on the

GPU, aborts are handled by having threads check if their own

status flags have been modified transactions as “abort”. The check

happens at commit stage (Line 20). An aborted transaction will

relinquish all ownership records it has taken so far and discard its

write log. A successfully committed transaction will flush its write

log to both the volatile memory and the NVRAM.

 In the STM algorithm shown in Figure 2, writes to the NVRAM

occur during a successful commit. Under the default Strict Persis-

tency model [14], a transaction must wait for the persist operation

to complete before declaring a successful commit. This adds the

Figure 2: The STM algorithm used in this paper.

NVRAM write latency onto the critical path of transaction execu-

tion, resulting in the overhead seen in Figure 1. To address this

issue, we propose a commit procedure utilizing Helper Warps to

move the delay away from the critical path.

4.2 Efficient Logging System with Helper Warp

Our proposed method separates the commit and persist steps of

transactions using Helper Warps. The Helper Warps are responsi-

ble for handling the persistence portion of transactions, enabling

persist operations to complete asynchronously with the rest of the

transaction. Figure 3 shows the overall commit protocol with the

Helper Warps added.

 There is a Helper Warp residing in each thread-block, and it

communicates with the normal warps via the per-thread-block

shared memory, where a persistence buffer is located. In addition,

each streaming multiprocessor (SM) has a bandwidth monitoring

window which is used to keep track of the instantaneous persis-

tence bandwidth during run time. Figure 4 illustrates the proposed

architecture, including the memory topology and added parts. The

connection between the volatile RAM and NVRAM is like the

one found in the recent AMD Vega architecture [17] which is

designed to support heterogeneous memory architecture, such as

SSD and DRAM.

 The persistence buffer is conceptually a FIFO queue physically

implemented as a ring buffer. Address-Value pairs are enqueued

by committing transactions and are drained by the Helper Warp.

Because there can be many more normal warps than logging

warps, the incoming write addresses are expected to be high-

volume bursts of writes. The Helper Warp drains the ring buffer

steadily and shapes the traffic into steady low-volume writes.

 Once a committing transaction finishes flushing its write set

into the buffer, the transaction can safely update the volatile

memory, release its ownership records, and allow its written val-

ues to be read by other transactions. When needed, the notification

completion of persistence can be made by the Helper Warps.

 The per-SM persistence buffers consist of an array of entries,

each consisting of a 40-bit address (for a memory space of 4TB);

and a 32-bit write value. Each buffer also contains control data

including buffer head and tail pointers (one per SM) and dirty bits

(one bit per entry) indicating whether each entry is updated or not.

Therefore, the size cost of one entry is 40+32+1 = 73 bits. The

size is small enough so it’s possible to use part of the per-SM

shared memory for the persistence buffers. Current-generation

GPUs provide users 64KB~96KB of shared memory that can be

accessed by all the warps running on the same SM. In practice, a

buffer with size around 1000 would suffice (around 10 KB),

which is acceptable compared with the size of the shared memory.

We use a size of 1300 which gives the best balance of concurren-

cy (maximum thread blocks allowed) and buffer size.

4.3 Correctness

In this study, we assume the working set of the program fits in the

DRAM, transactions write to both the DRAM and the NVRAM,

and read from the DRAM. The memory hierarchy layers in this

paper involves the DRAM, the volatile write logs, non-volatile

write logs, and the NVRAM system state. Each layer has its own

mechanism of guaranteeing its own correctness and the correct-

ness of the next layer for overall system correctness.

 The STM layer guarantees execution correctness in the DRAM.

This means the volatile and non-volatile write logs of each trans-

action will be conflict-free, so we only need to consider potential

conflicts between transactions committed at different times. This

can be handled by labeling each write log with a transaction ID,

so a transaction committed later will always overwrite one com-

mitted earlier. The persist step checks the completeness of write

logs before evolving the NVRAM system state. During recovery

from a power loss event: partially persisted logs will be discarded,

while the logs that have completed the persist step and are partial-

ly reproduced will be simply be reproduced again, overwriting the

partially-reproduced data.

 The Helper Warps will only affect how the volatile and non-

volatile write logs are ordered against each other, and have no

direct effect on the other layers. Correctness in the persist step

will be handled in the same way as without Helper Warps. To put

the proposed method under the Memory Persistency [15] perspec-

tive, the Helper Warps changes the Strict Persistency in the base-

line to Buffered Strict Persistency, from the non-volatile write log

point-of-view.

Figure 5. Run-time Helper Warp Adaptation Process.

Figure 3: Transaction timeline in the proposed architec-

ture.

Figure 4: Overall system architecture.

5. Performance Tuning

5.1 Persistence Bandwidth Monitoring

For profiling and performance tuning, we keep track of the instan-

taneous persistence bandwidth. Due to the distributed architecture

of GPU, the bandwidth is computed by each SM and accumulated

globally. In each SM, the amount of data persisted in different

time slices are logged. When a time slice passes, a delta between

the bandwidth measurements of the last time slices are sent and

added to the global bandwidth monitor. This process is illustrated

in Figure 4. Per-SM data are accumulated at the global bandwidth

monitor which can be consulted by individual SMs to decide

when to turn on/off Helper Warps.

5.2 Adaptively Enabling Helper Warps

Although Helper Warps could reduce the persistence delay of

transactions, speedup can only be observed when the persistence

time saved outweighs the overhead. The overhead includes the

cost to allocate entries in the persistence queue and waiting for the

queue to be drained by the Helper Warps at high write volumes.

For a program to achieve maximum efficiency, it should be able

to automatically determine when the Helper Warp should be ena-

bled or disabled according to program behavior.

 We use microbenchmark-based profiling to determine the

threshold for turning on/off Helper Warps. This is independent of

the NVRAM hardware connected to the GPU and can be used

when a new NVRAM device is connected to the GPU or during

device initialization. When turning off the Helper Warps, transac-

tions on a SM will wait for the persistence queue to be drained

such that strict buffered strict persistency may be maintained. The

whole run-time adaptation process is illustrated in Figure 5.

6. Experimental Setup

6.1 Hardware and Software Platform

We use real-system evaluation because it allows us factor in sys-

tem-wide factors such as software stack and OS overheads. Exper-

iments in this paper are run on an NVIDIA Pascal GPU, the GTX

1080 Ti, which has 56 streaming multiprocessors (SM), operating

at a processor clock of 1582 MHz, and 11 GB of GDDR5X

memory. There exist 64 CUDA cores in each of the SMs. The

total memory bandwidth of the GDDR5X memory is 484 GB/s. In

this study, we implement STM libraries in CUDA for running

transactions on the GPU, using the algorithms in Figures 2.

6.2 Bandwidth Emulation

In this paper, we study bandwidth limits ranging from 1.6 GB/s to

484 GB/s (the latter is the original bandwidth of the GPU used in

the study.) The bandwidth limits are achieved using artificial de-

lays. We establish the correlation between the delays and the un-

derlying bandwidth limits by using the program-observed band-

width as a proxy variable. The detailed steps are as follows:

 First, we measure execution time by having the benchmarks

persist into the GPU RAM (whose bandwidth is 484 GB/s), as

well as on the zero-copy pinned memory accessible through the

PCI-E bus (for 1.6 GB/s and 12 GB/s). We call these measure-

ments as reference points. Second, we add artificial latency in the

Figure 6: Overall running time of the benchmarks, with helper warps enabled (green) and disabled (red).

Table 1: Benchmarks used in this paper

A1 ATM Bank Transfer, 1M transfers, 100K accounts

A2 ATM Bank Transfer, 1M transfers, 1M accounts

H1 Hash Table, 500K inserts, 15M base entries

H2 Hash Table, 900K inserts, 1M base entries

B1 BVH [20] generation, 100,000-face model

R1 BVH reduction, 100,000-face model

B2 BVH generation, 187,854-face model

R2 BVH reduction, 187,854-face model

persist operation to emulate limited bandwidth on the NVRAM

between the measurements in step 1. We vary the artificial laten-

cy. For each latency value, we run a write pressure test (transac-

tions that only perform a non-conflicting write) and get a corre-

sponding program-observed memory bandwidth, called the proxy

bandwidth. We then map the program-observed bandwidths to the

delay values using linear interpolation. Thus, the delay value for a

desired memory bandwidth limit can be obtained simply by per-

forming a lookup.

6.3 Benchmarks

We use a series of transactional benchmarks to evaluate the Help-

er Warp mechanism proposed in this paper. The details are listed

in Table 1.

7. Evaluation

7.1 Overall Results

Figure 6 shows the run time of the benchmarks with and without

Helper Warps, using the experimental setup. The lines denote the

trend in which the run time is changing according to NVRAM

bandwidth limit. Green and red lines and dots denote the running

time with the Helper Warps enabled and disabled, respectively.

As the bandwidth decreases, running time for both configurations

increase. However, the running time without Helper Warps will

eventually increases faster and surpasses the time with Helper

Warps. There exists a point when these two running time curves

cross each other, which we refer to as the cross-point. The cross-

point is as high as 484 GB/s for H1 (meaning Helper Warps per-

form better even at volatile RAM bandwidth) or as low as 16.83

GB/s (11.75GB/s) for BVH1 (BVH2). For other cases, the cross-

point hovers between tens of GB/s to around 100 GB/s, which we

expect to be in the range of achievable NVRAM bandwidths giv-

en existing technologies.

7.2 Discussion

Analysis of transaction timeline. Figure 7 shows the commit

timeline of transactions in block 0 in benchmark A1. The maxi-

mum commit count per clock cycle is equal to the warp size of 32.

It can be observed that when persistence bandwidth is limited to

1.6 GB/s, a big gap appears between consecutive commits. Since

behavior of different blocks will be similar, the gap will directly

translate to longer overall running time. With Helper Warps, the

gap is noticeably reduced, resulting in a much shorter running

time for the benchmarks.

Transaction execution time breakdown. Figure 8 shows the

breakdown of transaction execution time in thread block 0, with

Helper Warps statically turned on and off. The latency in the per-

sistence phase introduced by limited bandwidth causes a “cas-

cade” effect, making other committing transactions longer time

than with Helper Warps. This is due to warp-level divergence and

the holding of ownership records making committing transaction

wait for the lengthy persistence operation to complete. This also

increases abort rates. By enabling Helper Warps, persistence

completes faster, and the “cascade” effect is mitigated.

7.3 Dynamic Switching of Helper Warps

We applied the switching mechanism described in Section 5.2 to

various bandwidth limits. In extreme cases such as 1.6 GB/s and

484 GB/s, the method decides to either turn on Helper Warps in

all situations (for the minimal, 1.6 GB/s bandwidth) or turn off in

all situations (for 484 GB/s bandwidth.)

 However, with intermediate bandwidth limits, the bandwidth is

set such that the switch happens within the program run and gives

better performance than either statically turning on or off the

Helper Warps.

 Figure 9 (top) shows the switching of Helper Warps in action in

response to changing persistence bandwidth. Kernel B1 is run and

immediately followed by R1. In B1, each thread only writes one

element, since in this kernel every transaction performs one opera-

tion on one node of the BVH tree; in comparison, transactions in

Figure 9: Persistence bandwidth trend for benchmark

B1+R1 with adaptive switching of Helper Warps (top) and

running time breakdown for 3 configurations (bottom).

Figure 7: Block-level transaction commit timeline for bench-

mark A1.

Figure 8: Breakdown of the average execution time of transac-

tions for metadata-based TM.

R1 start from the leaf nodes of the tree and may travel all the way

to the root node, thus the number of writes performed can be as

many as the depth of the tree. As a result, R1 writes more data

than B1: While the persistence bandwidth of B1 mostly stays

below 125 MB/s, the bandwidth of R1 spikes to nearly 1000

MB/s. Overall, the switching significantly reduced the time in R1

kernel and results in an improvement in running time of 20%

compared to always turning off Helper Warps, or 6% compared to

always turning on Helper Warps, as shown in Figure 9 (bottom).

 In contrast to the BVH benchmark, some other benchmarks will

observe a committing bandwidth that is higher than the threshold

for most of the program execution, such as A2. Its persistence

bandwidth trend may be observed in Figure 10 (top). Turning on

or off the Helper Warps statically throughout for this benchmark

results in a slightly performance loss as shown in Figure 10 (bot-

tom), due to the overhead involved in switching.

8. Conclusion

In this paper, we observed the performance penalty for transac-

tional GPU programs, resulting from the bandwidth limit of

NVRAMs, which causes long persistence latency. When the

NVRAM is used as a drop-in replacement of the main memory,

the latency will be directly added onto the critical path of transac-

tions, causing transactions to run longer. Further, this latency can

affect other threads located in the same warp, which turns into

even more running time overhead for entire benchmarks.

 We have proposed Helper Warps, which consists of a persis-

tence buffer located in the on-chip shared memory, where transac-

tion commits will be redirected to. This removes the time over-

head from the critical path, making the persistence operation fast-

er. We also proposed a method to enable the Helper Warps only

when necessary for best performance. Overall our proposed Help-

er Warps method yields better performance when the NVRAM

write bandwidth does not exceed a threshold value, which can be

up to hundreds of gigabytes per second in certain cases. This co-

vers the range of NVRAM bandwidth available for today and the

near future.

ACKNOWLEDGEMENTS

We appreciate the invaluable comments from the anonymous

reviewers. This work is supported in part by US National Science

Foundation (NSF) grants CCF-1422408 and CNS-1527318. We

also acknowledge the computing resources provided by the Loui-

siana Optical Network Initiative (LONI) HPC team. The corre-

sponding authors are Lu Peng and Lei Liu.

REFERENCES
[1] J. Zhao and Y. Xie, “Optimizing bandwidth and power of graphics memory

with hybrid memory technologies and adaptive data migration,” in 2012

IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pp.

81–87, Nov 2012.

[2] M. Herlihy and J. E. B. Moss, Trasactional Memory: Architectural Support for

Lock-free Data Structures. IEEE Computers Society Press, 1993.

[3] Y. Xu, R. Wang, N. Goswami, and T. Li, “Software Transactional Memory for

GPU Architectures,” Proceedings of the International Symposium on Code

Generation and Optimization (CGO), 2014.

[4] A. Holey and A. Zhai, “Lightweight Software Transactions on GPUs,” in

Proceedings of the 43rd International Conference on Parallel Processing

(ICPP), 2014.

[5] W. W. L. Fung and T. M. Aamodt, “Energy efficient GPU transactional

memory via space-time optimizations,” in Proceedings of the 46th International

Symposium on Microarchitecture (MICRO), 2013.

[6] S. Chen and L. Peng, “Efficient GPU Hardware Transactional Memory through

Early Conflict Resolution,” in Proceedings of the 2016 IEEE International

Symposium on High Performance Computer Architecture (HPCA), pp. 274–

284, March 2016.

[7] S. Chen, L. Peng, and S. Irving, “Accelerating GPU Hardware Transactional

Memory with Snapshot Isolation,” 2017 ACM/IEEE 44th International Sympo-

sium on Computer Architecture (ISCA), vol. 45, pp. 282–294, June 2017.

[8] M. Liu, M. Zhang, K. Chen, X. Qian, Y. Wu, W. Zheng, and J. Ren, “DudeTM:

Building durable transactions with decoupling for persistent memory,” in Pro-

ceedings of the Twenty-Second International Conference on Architectural Sup-

port for Programming Languages and Operating Systems, ASPLOS ’17, (New

York, NY, USA), pp. 329–343, ACM, 2017.

[9] A. Joshi, V. Nagarajan, S. Viglas, and M. Cintra, “Atom: Atomic durability in

non-volatile memory through hardware logging,” in 2017 IEEE International

Symposium on High Performance Computer Architecture (HPCA), pp. 361–

372, Feb 2017.

[10] J. Coburn, A. M. Caulfield, A. Akel, L. M. Grupp, R. K. Gupta, R. Jhala, and S.

Swanson, “Nv-heaps: Making persistent objects fast and safe with next-

generation, non-volatile memories,” SIGPLAN Not., vol. 46, pp. 105–118, Mar.

2011.

[11] J. Zhao, S. Li, D. H. Yoon, Y. Xie, and N. P. Jouppi, “Kiln: Closing the perfor-

mance gap between systems with and without persistence support,” in Proceed-

ings of the 46th Annual IEEE/ACM International Symposium on Microarchi-

tecture, MICRO-46, (New York, NY, USA), pp. 421–432, ACM, 2013.

[12] L. Liu, S.-J. Yang, L. Peng, and X. Li, “Hierarchical Hybrid Memory Manage-

ment in OS for Tiered Memory Systems,” IEEE Transactions on Parallel and

Distributed Systems (TPDS), 2019.

[13] B. Wang, B. Wu, D. Li, X. Shen, W. Yu, Y. Jiao, and J. S. Vetter, “Exploring

Hybrid Memory for GPU Energy Efficiency through Software-Hardware Co-

Design,” in Proceedings of the 22nd International Conference on Parallel Archi-

tectures and Compilation Techniques, PACT ’13, (Piscataway, NJ, USA), pp.

93–102, IEEE Press, 2013.

[14] S. Pelley, Peter M. Chen, Thomas F. Wenisch, “Memory Persistency,” 2014

ACM/IEEE 41th International Symposium on Computer Architecture (ISCA),

vol. 42, pp. 265-276, June 2014.

[15] Intel Corporation, “Intel Optane DC Persistent Memory Now Sampling.”

http://www.legitreviews.com/intel-optanedc-persistent-memory-now-

sampling_205757, 2018. Retrieved on 2018-11-24.

[16] Advanced Micro Devices, “Radeon’s next-generation Vega architecture”, 2017.

Retrieved on 2018-11-24.

[17] F. T. Hady, A. Foong, B. Veal, and D. Williams, “Platform storage performance

with 3d xpoint technology,” Proceedings of the IEEE, vol. 105, pp. 1822–1833,

Sept 2017.

[18] E. Kim, “‘How Fast is Fast?’ Block IO Performance on a RAM Disk,” Proceed-

ings of the Storage Networking Industry Association (SNIA) Data Storage In-

novation Conference (DSI 2015).

[19] M. Shantharam, K. Iwabuchi, P. Cicotti, L. Carrington, M. Gokhale and R.

Pearce, "Performance Evaluation of Scale-Free Graph Algorithms in Low La-

tency Non-volatile Memory," 2017 IEEE International Parallel and Distributed

Processing Symposium Workshops (IPDPSW), Orlando, Florida, USA, 2017,

pp. 1021-1028.

[20] T. Karras, “Maximizing parallelism in the construction of bvhs, octrees, and k-d

trees,” in Proceedings of the Fourth ACM SIGGRAPH / Eurographics Confer-

ence on High-Performance Graphics, EGGH-HPG’12, Aire-la-Ville, Switzer-

land, Switzerland, pp. 33–37, Eurographics Association, 2012.

Figure 10: Persistence bandwidth trend for benchmark A2

with Helper Warp turned off (top) and running time

breakdown for 3 configurations (bottom).

