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ABSTRACT 

Non-volatile Random-Access Memories (NVRAM) have emerged 

in recent years to bridge the performance gap between the main 

memory and external storage devices. To utilize the non-volatility 

of NVRAMs, programs should allow durable stores, meaning 

consistency must be maintained during a power loss event. GPUs 

are designed with high throughput, leveraging high degrees of 

parallelism. However, with lower NVRAM write bandwidths 

compared to that of DRAMs, using NVRAM as is may yield sub-

optimal overall system performance. To address this problem, we 

propose using Helper Warps to move persistence out of the criti-

cal path of transaction execution, alleviating the impact of laten-

cies. Our mechanism achieves a speedup of 4.4 and 1.5 under 

bandwidth limits of 1.6 GB/s and 12 GB/s and is projected to 

maintain speed advantage even when NVRAM bandwidth gets as 

high as hundreds of GB/s in certain cases. 

KEYWORDS 

Non-volatile Random-Access Memories, GPU, Persistence, Help 

Warps. 

1. Introduction 

Non-volatile Random-Access Memory (NVRAM) has emerged 

and has been maturing in the past few years as a promising re-

placement for the DRAM. With its large capacity and durability, 

NVRAMs can enable and justify new programming paradigms 

such as transactional memory. 

    A byte-addressable, durable storage device such as NVRAM 

may be used in a few different ways. In the simplest form, it may 

be used as a large-capacity, drop-in replacement for the DRAM or 

the cache. This type of system has been discussed on both the 

CPU and GPU [1] but does not leverage its durability property. 

Another more sophisticated approach is to use the NVRAM as a 

persistent data store, making it an integral part of a transaction 

processing system (TPS). The architecture of a TPS usually in-

volves two layers: a concurrency protocol layer, which may be 

embodied as a transactional memory or a locking mechanism, is 

responsible for detecting and resolving conflicts between transac-

tions; and a logging layer that performs writes in the form of jour-

nal logs to achieve durability that can maintain data integrity dur-

ing a power loss event. On the CPU, such TPS systems can in-

volve hardware and software; the GPU is steps behind the CPU, 

as there exists works on transactional memory but not TPS sys-

tems based on NVRAM at the current moment. 

    Despite its larger storage density, NVRAM provides less 

bandwidth than DRAM and the cache. Therefore, bandwidth-

induced latency needs to be managed well to avoid performance 

degradation. Software and hardware approaches are needed to 

alleviate the penalty induced by the bandwidth gap. 

In this paper, we make the following contributions: 

• To the best of our knowledge, we propose the first efficient 

and easy-to-use transaction processing system that uses 

NVRAM storage on GPUs in this paper. 

• We propose the use of Helper Warps that utilize spare com-

pute power on the GPU to alleviate the write bandwidth lim-

it. 

• We establish a mechanism that can adaptively enable the 

Helper Warps to achieve the best performance under differ-

ent program behaviors. 

2. Related Work 

Transactional Memory (TM) [2] is a key technique for enabling 

OLTP workloads involving concurrent reads and writes on the 

GPU. Both hardware-based (HTM) and software-based (STM) 

systems have been proposed on the GPU. Software systems [3, 4] 

utilize various GPU-centric optimizations that to utilize the GPU’s 

parallel processing power to perform basic tasks in the TM system 

in parallel, such as lock management, and coalesced read and 

write log access, and using GPU-friendly data layout such as 

structures-of-arrays instead of arrays-of-structures. With these 

efforts combined, the GPU-based STM systems can rival or even 

outperform CPU-based STM systems. 

    For hardware approaches [5, 6, 7], these proposals feature 

hardware-implemented TM algorithms, as well as new hardware 

architectures that provide new versioning techniques and new 

conflict detection mechanisms. 

    For efficient use of NVRAM on the CPU, DudeTM [8] and 

ATOM [9] achieve high write/persistence performance by decou-

pling, i.e. by performing the persistence step outside the critical 

path. These systems mainly focused on CPUs. NV-Heaps [10] 

discusses the interoperation between the NVRAM and DRAM are 

used simultaneously. Kiln [11] proposes to add non-volatile cach-

es and form a multi-versioned persistent system. 

    NVRAM has also been considered for enhancing existing GPU 

cache and memory subsystem. A recent work [12] discerns access 

patterns and manages hybrid DRAM and NVRAM accordingly. 

Due to NVRAM having only a fraction of the bandwidth of that of 

the DRAM, hybrid designs need to be adopted to alleviate the 

bandwidth gap [1, 13]. The existing work do not utilize persis-
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tence. In contrast, we will support persistence for NVRAM using 

in GPUs in this paper. 

3. Limited NVRAM Bandwidth on GPUs 

 

Figure 1: Impact of bandwidth on execution time. 

Today’s NVRAM devices deliver lower bandwidth than that of 

DRAMs. This performance gap may be observed in 4K block 

operations utilizing either technology, with one of today’s high-

end NVRAM devices delivering 500K write I/O operations per 

second (IOPS) [17], significantly lower than the 3,000K write 

IOPS of RAM disks in the same PCI-E interface [18]. Recent 

researches achieved aggregate bandwidths ranging from several 

GB/s to tens of GB/s [19]. Especially, the Intel PMFS offers two 

options for aggregate NVRAM bandwidth: 9.5 GB/s and 37 GB/s. 

This is in the same ballpark as that of the current 3D XPoint 

commercial products [15] which have a write bandwidth of 6 

GB/s. 

    The bandwidths illustrated above are both lower than a state-of-

the-art GPU, the NVIDIA GTX 1080Ti or AMD Vega 64, both at 

484 GB/s. As a motivating example, we run a few benchmarks 

with bandwidth limits enforced on their persistent store. The im-

pact of bandwidth limits on bandwidth-bound transaction pro-

cessing workloads is easily visible: the total program running time 

will become several times (up to 15x) longer compared with high-

er bandwidth system, as shown in Figure 1. 

    We have observed that a transactional program consists of three 

stages, execute, commit and persist. The persist step is more 

memory-constrained than the other two stages, with some com-

pute resources rendered idle while waiting for memory accesses. 

Fortunately, by performing the persist step asynchronously, over-

lapping it with the other stages, the impact of bandwidth limit and 

the latency may be greatly mitigated or even eliminated. In this 

paper, we design and implement a software-based approach for 

this purpose. The idea can also be expanded to hardware-based 

design. 

4. Efficient GPU NVRAM Persistence Support 

NVRAM provides data durability, and is usually used with a log-

ging mechanism for consistency. Just like a file system that is set 

up on top of a disk or SSD, logging enables error-correction and 

maintains data consistency in power outage events. In various 

logging implementations, writes are first buffered into logs (called 

“persist”) and then used to evolve the system state stored in the 

NVRAM (called “reproduce”). Log generation usually requires a 

certain concurrency control mechanism in place to resolve con-

flicts between participating transactions. For this purpose, a soft-

ware/hardware transactional memory (STM/HTM), or an equiva-

lent (such as two-phase locking) is usually used to work with the 

logging system and combined as a transaction processing system. 

4.1 Transaction Processing  

Transaction processing usually consists of two parts, concurrency 

control and persistence logging. The system we investigate in this 

paper uses Software Transactional Memory (STM) for concurren-

cy control. Our STM algorithm employs eager conflict detection 

and redo-logging and resolves conflicts with global ownership 

records. The granularity of write/read set tracking is a 32-bit ma-

chine word. Accesses to data of larger sizes are treated as multiple 

32-bit machine words. This algorithm does not distinguish be-

tween read and write. Conflicts are resolved by favoring transac-

tions with a lower thread ID. 

    The structure of the TM algorithm, from the transaction’s point 

of view, is described in Figure 2. When a transaction TA performs 

a transactional read or a write (Line 1), it first attempts to take the 

ownership record for the corresponding machine word. When 

there are no other transactions holding this ownership record 

(Line 4), the current transaction takes ownership with an atomic 

compare-and-swap (CAS) (Line 5). The usage of CAS guarantees 

that when there are multiple transactions attempting to take own-

ership, only one would succeed. The situation when another trans-

action TB already owns this ownership record (Line 3) is called a 

conflict, which must be resolved by aborting one of the transac-

tions: if TA’s thread ID is smaller than TB’s, TA may preempt this 

ownership record and signal TB to abort (Line 10), which is also 

done with an atomic CAS. If TB and TA are the same transaction 

nothing needs to be done (Line 14). Otherwise, TA must abort 

itself (Line 16). This global ordering of priority prevents deadlock 

and ensures system-wide progress. Implementation-wise, because 

it’s difficult to directly send signals to individual threads on the 

GPU, aborts are handled by having threads check if their own 

status flags have been modified transactions as “abort”. The check 

happens at commit stage (Line 20). An aborted transaction will 

relinquish all ownership records it has taken so far and discard its 

write log. A successfully committed transaction will flush its write 

log to both the volatile memory and the NVRAM.  

    In the STM algorithm shown in Figure 2, writes to the NVRAM 

occur during a successful commit.  Under the default Strict Persis-

tency model [14], a transaction must wait for the persist operation 

to complete before declaring a successful commit. This adds the 

 

Figure 2: The STM algorithm used in this paper. 



  

 

 

 

NVRAM write latency onto the critical path of transaction execu-

tion, resulting in the overhead seen in Figure 1. To address this 

issue, we propose a commit procedure utilizing Helper Warps to 

move the delay away from the critical path. 

4.2 Efficient Logging System with Helper Warp  

Our proposed method separates the commit and persist steps of 

transactions using Helper Warps. The Helper Warps are responsi-

ble for handling the persistence portion of transactions, enabling 

persist operations to complete asynchronously with the rest of the 

transaction.  Figure 3 shows the overall commit protocol with the 

Helper Warps added.   

    There is a Helper Warp residing in each thread-block, and it 

communicates with the normal warps via the per-thread-block 

shared memory, where a persistence buffer is located. In addition, 

each streaming multiprocessor (SM) has a bandwidth monitoring 

window which is used to keep track of the instantaneous persis-

tence bandwidth during run time. Figure 4 illustrates the proposed 

architecture, including the memory topology and added parts. The 

connection between the volatile RAM and NVRAM is like the 

one found in the recent AMD Vega architecture [17] which is 

designed to support heterogeneous memory architecture, such as 

SSD and DRAM. 

    The persistence buffer is conceptually a FIFO queue physically 

implemented as a ring buffer.  Address-Value pairs are enqueued 

by committing transactions and are drained by the Helper Warp. 

Because there can be many more normal warps than logging 

warps, the incoming write addresses are expected to be high-

volume bursts of writes.  The Helper Warp drains the ring buffer 

steadily and shapes the traffic into steady low-volume writes. 

    Once a committing transaction finishes flushing its write set 

into the buffer, the transaction can safely update the volatile 

memory, release its ownership records, and allow its written val-

ues to be read by other transactions. When needed, the notification 

completion of persistence can be made by the Helper Warps. 

    The per-SM persistence buffers consist of an array of entries, 

each consisting of a 40-bit address (for a memory space of 4TB); 

and a 32-bit write value. Each buffer also contains control data 

including buffer head and tail pointers (one per SM) and dirty bits 

(one bit per entry) indicating whether each entry is updated or not. 

Therefore, the size cost of one entry is 40+32+1 = 73 bits. The 

size is small enough so it’s possible to use part of the per-SM 

shared memory for the persistence buffers. Current-generation 

GPUs provide users 64KB~96KB of shared memory that can be 

accessed by all the warps running on the same SM. In practice, a 

buffer with size around 1000 would suffice (around 10 KB), 

which is acceptable compared with the size of the shared memory. 

We use a size of 1300 which gives the best balance of concurren-

cy (maximum thread blocks allowed) and buffer size. 

4.3 Correctness 

In this study, we assume the working set of the program fits in the 

DRAM, transactions write to both the DRAM and the NVRAM, 

and read from the DRAM. The memory hierarchy layers in this 

paper involves the DRAM, the volatile write logs, non-volatile 

write logs, and the NVRAM system state. Each layer has its own 

mechanism of guaranteeing its own correctness and the correct-

ness of the next layer for overall system correctness. 

    The STM layer guarantees execution correctness in the DRAM. 

This means the volatile and non-volatile write logs of each trans-

action will be conflict-free, so we only need to consider potential 

conflicts between transactions committed at different times. This 

can be handled by labeling each write log with a transaction ID, 

so a transaction committed later will always overwrite one com-

mitted earlier. The persist step checks the completeness of write 

logs before evolving the NVRAM system state. During recovery 

from a power loss event: partially persisted logs will be discarded, 

while the logs that have completed the persist step and are partial-

ly reproduced will be simply be reproduced again, overwriting the 

partially-reproduced data. 

    The Helper Warps will only affect how the volatile and non-

volatile write logs are ordered against each other, and have no 

direct effect on the other layers. Correctness in the persist step 

will be handled in the same way as without Helper Warps. To put 

the proposed method under the Memory Persistency [15] perspec-

tive, the Helper Warps changes the Strict Persistency in the base-

line to Buffered Strict Persistency, from the non-volatile write log 

point-of-view. 

 

Figure 5. Run-time Helper Warp Adaptation Process. 

Figure 3: Transaction timeline in the proposed architec-

ture. 

 

Figure 4: Overall system architecture. 



  

 

 

 

5. Performance Tuning 

5.1 Persistence Bandwidth Monitoring 

For profiling and performance tuning, we keep track of the instan-

taneous persistence bandwidth. Due to the distributed architecture 

of GPU, the bandwidth is computed by each SM and accumulated 

globally. In each SM, the amount of data persisted in different 

time slices are logged. When a time slice passes, a delta between 

the bandwidth measurements of the last time slices are sent and 

added to the global bandwidth monitor. This process is illustrated 

in Figure 4. Per-SM data are accumulated at the global bandwidth 

monitor which can be consulted by individual SMs to decide 

when to turn on/off Helper Warps. 

5.2 Adaptively Enabling Helper Warps 

Although Helper Warps could reduce the persistence delay of 

transactions, speedup can only be observed when the persistence 

time saved outweighs the overhead. The overhead includes the 

cost to allocate entries in the persistence queue and waiting for the 

queue to be drained by the Helper Warps at high write volumes. 

For a program to achieve maximum efficiency, it should be able 

to automatically determine when the Helper Warp should be ena-

bled or disabled according to program behavior.  

    We use microbenchmark-based profiling to determine the 

threshold for turning on/off Helper Warps. This is independent of 

the NVRAM hardware connected to the GPU and can be used 

when a new NVRAM device is connected to the GPU or during 

device initialization. When turning off the Helper Warps, transac-

tions on a SM will wait for the persistence queue to be drained 

such that strict buffered strict persistency may be maintained. The 

whole run-time adaptation process is illustrated in Figure 5. 

6. Experimental Setup 

6.1 Hardware and Software Platform 

We use real-system evaluation because it allows us factor in sys-

tem-wide factors such as software stack and OS overheads. Exper-

iments in this paper are run on an NVIDIA Pascal GPU, the GTX 

1080 Ti, which has 56 streaming multiprocessors (SM), operating 

at a processor clock of 1582 MHz, and 11 GB of GDDR5X 

memory. There exist 64 CUDA cores in each of the SMs. The 

total memory bandwidth of the GDDR5X memory is 484 GB/s. In 

this study, we implement STM libraries in CUDA for running 

transactions on the GPU, using the algorithms in Figures 2. 

6.2 Bandwidth Emulation 

In this paper, we study bandwidth limits ranging from 1.6 GB/s to 

484 GB/s (the latter is the original bandwidth of the GPU used in 

the study.) The bandwidth limits are achieved using artificial de-

lays. We establish the correlation between the delays and the un-

derlying bandwidth limits by using the program-observed band-

width as a proxy variable. The detailed steps are as follows: 

    First, we measure execution time by having the benchmarks 

persist into the GPU RAM (whose bandwidth is 484 GB/s), as 

well as on the zero-copy pinned memory accessible through the 

PCI-E bus (for 1.6 GB/s and 12 GB/s). We call these measure-

ments as reference points. Second, we add artificial latency in the 

 

 

Figure 6: Overall running time of the benchmarks, with helper warps enabled (green) and disabled (red). 

Table 1: Benchmarks used in this paper 

A1 ATM Bank Transfer, 1M transfers, 100K accounts 

A2 ATM Bank Transfer, 1M transfers, 1M accounts 

H1 Hash Table, 500K inserts, 15M base entries 

H2 Hash Table, 900K inserts, 1M base entries 

B1 BVH [20] generation, 100,000-face model 

R1 BVH reduction, 100,000-face model 

B2 BVH generation, 187,854-face model 

R2 BVH reduction, 187,854-face model 

 

 



  

 

 

 

persist operation to emulate limited bandwidth on the NVRAM 

between the measurements in step 1. We vary the artificial laten-

cy. For each latency value, we run a write pressure test (transac-

tions that only perform a non-conflicting write) and get a corre-

sponding program-observed memory bandwidth, called the proxy 

bandwidth. We then map the program-observed bandwidths to the 

delay values using linear interpolation. Thus, the delay value for a 

desired memory bandwidth limit can be obtained simply by per-

forming a lookup. 

6.3 Benchmarks 

We use a series of transactional benchmarks to evaluate the Help-

er Warp mechanism proposed in this paper. The details are listed 

in Table 1.  

7. Evaluation 

7.1 Overall Results 

Figure 6 shows the run time of the benchmarks with and without 

Helper Warps, using the experimental setup. The lines denote the 

trend in which the run time is changing according to NVRAM 

bandwidth limit. Green and red lines and dots denote the running 

time with the Helper Warps enabled and disabled, respectively. 

As the bandwidth decreases, running time for both configurations 

increase. However, the running time without Helper Warps will 

eventually increases faster and surpasses the time with Helper 

Warps. There exists a point when these two running time curves 

cross each other, which we refer to as the cross-point. The cross-

point is as high as 484 GB/s for H1 (meaning Helper Warps per-

form better even at volatile RAM bandwidth) or as low as 16.83 

GB/s (11.75GB/s) for BVH1 (BVH2). For other cases, the cross-

point hovers between tens of GB/s to around 100 GB/s, which we 

expect to be in the range of achievable NVRAM bandwidths giv-

en existing technologies. 

7.2 Discussion 

Analysis of transaction timeline. Figure 7 shows the commit 

timeline of transactions in block 0 in benchmark A1. The maxi-

mum commit count per clock cycle is equal to the warp size of 32. 

It can be observed that when persistence bandwidth is limited to 

1.6 GB/s, a big gap appears between consecutive commits. Since 

behavior of different blocks will be similar, the gap will directly 

translate to longer overall running time. With Helper Warps, the 

gap is noticeably reduced, resulting in a much shorter running 

time for the benchmarks. 

Transaction execution time breakdown. Figure 8 shows the 

breakdown of transaction execution time in thread block 0, with 

Helper Warps statically turned on and off. The latency in the per-

sistence phase introduced by limited bandwidth causes a “cas-

cade” effect, making other committing transactions longer time 

than with Helper Warps. This is due to warp-level divergence and 

the holding of ownership records making committing transaction 

wait for the lengthy persistence operation to complete. This also 

increases abort rates. By enabling Helper Warps, persistence 

completes faster, and the “cascade” effect is mitigated. 

7.3 Dynamic Switching of Helper Warps 

We applied the switching mechanism described in Section 5.2 to 

various bandwidth limits. In extreme cases such as 1.6 GB/s and 

484 GB/s, the method decides to either turn on Helper Warps in 

all situations (for the minimal, 1.6 GB/s bandwidth) or turn off in 

all situations (for 484 GB/s bandwidth.) 

    However, with intermediate bandwidth limits, the bandwidth is 

set such that the switch happens within the program run and gives 

better performance than either statically turning on or off the 

Helper Warps. 

    Figure 9 (top) shows the switching of Helper Warps in action in 

response to changing persistence bandwidth. Kernel B1 is run and 

immediately followed by R1. In B1, each thread only writes one 

element, since in this kernel every transaction performs one opera-

tion on one node of the BVH tree; in comparison, transactions in 

 

 

Figure 9: Persistence bandwidth trend for benchmark 

B1+R1 with adaptive switching of Helper Warps (top) and 

running time breakdown for 3 configurations (bottom). 

 

Figure 7: Block-level transaction commit timeline for bench-

mark A1. 

 

Figure 8: Breakdown of the average execution time of transac-

tions for metadata-based TM. 

 



  

 

 

 

R1 start from the leaf nodes of the tree and may travel all the way 

to the root node, thus the number of writes performed can be as 

many as the depth of the tree. As a result, R1 writes more data 

than B1: While the persistence bandwidth of B1 mostly stays 

below 125 MB/s, the bandwidth of R1 spikes to nearly 1000 

MB/s. Overall, the switching significantly reduced the time in R1 

kernel and results in an improvement in running time of 20% 

compared to always turning off Helper Warps, or 6% compared to 

always turning on Helper Warps, as shown in Figure 9 (bottom).  

    In contrast to the BVH benchmark, some other benchmarks will 

observe a committing bandwidth that is higher than the threshold 

for most of the program execution, such as A2. Its persistence 

bandwidth trend may be observed in Figure 10 (top). Turning on 

or off the Helper Warps statically throughout for this benchmark 

results in a slightly performance loss as shown in Figure 10 (bot-

tom), due to the overhead involved in switching. 

8. Conclusion  

In this paper, we observed the performance penalty for transac-

tional GPU programs, resulting from the bandwidth limit of 

NVRAMs, which causes long persistence latency. When the 

NVRAM is used as a drop-in replacement of the main memory, 

the latency will be directly added onto the critical path of transac-

tions, causing transactions to run longer. Further, this latency can 

affect other threads located in the same warp, which turns into 

even more running time overhead for entire benchmarks. 

    We have proposed Helper Warps, which consists of a persis-

tence buffer located in the on-chip shared memory, where transac-

tion commits will be redirected to. This removes the time over-

head from the critical path, making the persistence operation fast-

er. We also proposed a method to enable the Helper Warps only 

when necessary for best performance. Overall our proposed Help-

er Warps method yields better performance when the NVRAM 

write bandwidth does not exceed a threshold value, which can be 

up to hundreds of gigabytes per second in certain cases. This co-

vers the range of NVRAM bandwidth available for today and the 

near future. 
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Figure 10: Persistence bandwidth trend for benchmark A2 

with Helper Warp turned off (top) and running time 

breakdown for 3 configurations (bottom). 


