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ABSTRACT 
The Huge page mechanism is proposed to reduce the TLB 
misses and benefit the overall system performance. On the 
system with large memory capacity, using huge pages is an 
ideal choice to alleviate the virtual-to-physical address 
translation overheads. However, using huge pages might 
incur expensive memory compaction operations due to 
memory fragmentation problem, and lead to memory 
bloating as many huge pages are often underutilized in 
practice. 

In order to address these problems, in this paper, we 
propose SysMon-H, a sampling module in OS kernel, 
which is able to obtain the huge page utilization in a low 
overhead for both cloud and desktop applications. 
Furthermore, we propose H-Policy, a huge page 
management policy, which splits the underutilized huge 
pages to mitigate the memory bloating or promotes the base 
4KB pages to huge pages for reducing the TLB misses 
based on the information provided by SysMon-H. In our 
prototype, SysMon-H and H-Policy work cooperatively in 
OS kernel. 

1 INTRODUCTION 
We are in the era of big data and cloud computing. In this 
era, applications have rapidly increasing memory footprints 
and demand for throughput than ever before [20,22,27]. For 
example, the widely used cloud workloads, e.g., 
Memcached and Redis, have several hundred GB/TB-level 
memory demands on YouTube, Facebook and Twitter’s 
data center [2,6]. Meanwhile, designing an efficient 
memory management mechanism for computer systems 
with a large memory capacity is always challenging the 
existing Operating System (OS) [7,10,14,24]. 
     Chasing a high overall system performance, previous 
studies [8,10,24] propose schemes on using huge page for 

cloud computing environments. Huge page helps to reduce 
the number of TLB misses and thus benefits the overall 
system performance [10,14,16]. Modern architecture has 
TLB entries for huge pages. For example, The Intel 
Nehalem, Sandy Bridge/Skylake series processors now 
have 512/1536 TLB entries for huge pages [9]. Yet, the 
huge page is not always a free lunch, and the OS is now 
wrestling with the following challenges. (1) In reality, the 
huge page is often with low utilization (the term 
“utilization” stands for the fraction of a memory page that 
is actually used for data storage), incurring memory 
bloating and thereby wasting memory. Previous efforts [2, 
16] show, in Redis, using huge page wastes 69% memory 
compared with using only base 4KB page. (2) Allocating 
huge pages often incur significant overheads on memory 
compaction. As system ages, physical memory is 
fragmented, thus OS has to compact physical memory to 
create contiguous regions for huge page allocations. In 
many cases, as some kernel-level pages cannot be moved, 
OS fails to have contiguous regions for allocating huge 
pages [11,12,24]. Even the compaction is successful, the 
overheads are ineligible [12]. Due to these problems, some 
reports [16,24] claim using huge page may incur 
performance degradation and recommend disabling the 
huge page mechanism. 

To make the huge page actually useful, the efforts in [8, 
23,24] propose the adaptive huge page allocation 
approaches, which are application transparent and support 
multiple page sizes (i.e., enabling small page or huge page 
accordingly). Now, Linux uses the Transparent Huge Pages 
(THP) mechanism, which allocates a 2MB huge page for 
every memory request and enables compaction operation if 
there is no contiguity memory space for the huge page 
allocation. However, compaction routine often fails and 
brings nothing benefits but overheads. Going with frequent 
latency spiking brought by compactions [1–3], THP also 
cannot avoid the low utilization problem for huge pages. 
And, memory bloating caused by enabling huge page may 
waste a large amount of memory, leading to swapping data 
with the hard disk, especially in the cases, where memory 
resource is not ample. 
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     In this paper, we believe that making OS aware of huge 
page utilization is necessary for cloud environments. For 
example, database workloads often perform poorly with 
huge pages, because they tend to have sparse rather than 
contiguous memory access patterns. If OS always allocates 
huge pages for such sort of workloads, the memory 
utilization will become very low and might lead to 
expensive swapping operations. To our knowledge, even 
the studies have the idea of using multiple page sizes 
according to the memory system’s current status and 
workloads patterns, e.g. the efforts in [8], it is still a 
fundamental problem for OS to understand the huge page 
utilization, and thereby adapting memory policies 
accordingly becomes difficult in reality. 
     Towards this end, we design a practical OS-level 
monitoring tool (SysMon-H), which is capable of capturing 
the huge page utilization with low overhead at runtime for 
cloud workloads. SysMon-H is the first work that combines 
TLB monitoring and page-table walks to achieve both high 
accuracy and low overhead for monitoring huge pages. And, 
we propose H-Policy as a new memory policy for huge 
page management in OS. The sampling results from 
SysMon-H can be used by H-Policy to enable appropriate 
memory management policies, e.g., splitting huge pages 
into small ones or promoting base pages to huge pages. H-
Policy and SysMon-H work cooperatively in OS kernel. 

2 BACKGROUNDS AND MOTIVATION 
Linux kernel supports using huge pages since the version 
2.6 (e.g., Debian since 2.6.32)1. There are two ways of 
enabling the huge pages in Linux: (1) using hugetlbfs [1, 4], 
people can reserve a large number of memory pages with a 
consecutive physical address for huge page allocations. 
However, this approach is not flexible, as the reserved 
pages can only be used for huge page allocations; (2) THP 
can transparently allocate huge pages without the human 
involvements. On a system with THP, when a page fault 
occurs, THP tries to find a block with 512 contiguous 
physical pages (2MB) in buddy system [5,11]. However, as 
system ages, there will be lots of fragments in memory 
space, thus THP has to enable the time-consuming memory 
compactions to create a huge page (2MB contiguous pages) 
[23]. In extreme cases, where the compaction operation 
fails due to the unmovable pages, THP has to merely return 
a basic 4KB page with a long latency. The latest work in 
[24] skips the hybrid page blocks (those blocks with 

                                                                    
1 Linux now supports 2MB and 1GB huge pages. In this paper, we use 2MB 

huge pages in our experiments. The term huge page refers to 2MB huge page. 

unmovable pages) during the compactions, therefore 
reducing the allocation latency. [16] proposes an 
asynchronous allocation to create contiguous memory 
spaces for huge pages, thus reducing the overhead brought 
by compactions. 
     In addition to prior work, we have the following insights 
into huge page management. (1) It will be necessary to 
make OS aware of the huge page utilization at runtime, as 
memory bloating always wastes a large amount of memory. 
In the cases where memory is limited, OS needs to split the 
huge pages with lower utilization into small pages, and then 
other applications can use them. The existing work does not 
discuss this topic in details. (2) OS should have a flexible 
memory mechanism and adapt the appropriate policy 
according to the workloads’ patterns and memory system’s 
status at runtime. In this work, we try to answer two 
questions: can we have a new memory policy for huge 
page management? How to make OS aware of the huge 
page utilization in a low overhead?  

3 MONITORING THE HUGE PAGE 
UTILIZATION 

To address the above-mentioned questions, the first step is 
to design a practical OS kernel-level module for capturing 
the memory pages’ utilization (including both of the Huge 
2MB and base 4KB pages). We use Linux with the kernel 
version 3.16 in our experiments, and our experiment 
platform is with an Intel Nehalem i7-2.8GHz CPU (with 
512 TLB entries for Huge pages) and 32GB main memory. 

3.1 SysMon-H 
Many previous studies [17,19,21,25,26] periodically check 
the access_bit in PTEs (Page Table Entry) to monitor the 
temperature (i.e., access frequency) of the memory pages. 
However, with the increasing of memory footprint, 
frequently checking the access_bit is not cost-effective. For 
example, in our experiment with Redis, the sampling 
overhead achieves 6 seconds in a specific sampling window 
when memory footprint is around 20GB, affecting the user 
experience in practice. Obviously, we need a new approach 
for monitoring the cloud workloads. 

In this paper, we design SysMon-H, an OS module 
(enhanced from [13,19,28]) to collect the number of TLB 
misses for huge pages instead of merely relying on 
access_bit. The core idea of SysMon-H is from the 
observations that the cold pages (rarely accessed pages) 
have only a small number of TLB misses; In contrast, hot 
pages usually incur a large number of TLB misses, as they 
are frequently required to be loaded into TLB. For a progr- 
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-am with a large working set, hot pages will be swapped 
in/out of the TLB repeatedly, thus by monitoring the 
number of TLB misses, SysMon-H can obtain the 
distribution of memory accesses for the huge pages in the 
entire memory address space. Usually, a high number of 
TLB misses stand for a huge page with a high temperature 
(“hot” huge page) and been touched frequently; in contrast, 
a huge page with a low temperature might be considered 
split into base pages (4KB pages) to mitigate the memory 
bloating problem. Our approach is reasonable, because 
TLB has a limited number of entries and it employs a hash 
function based replacement algorithm to prevent the side-
channel attack from TLB, thus each page’s TLB entry has 
the almost equal opportunity to be swapped out [15]. 

Previous work [13] can merely obtain the overall 
number of TLB misses for a specific application. In our 
design, by attaching a shadow array in application’s VMA, 
SysMon-H can obtain the distributions of TLB misses in 
the application’s address space at runtime, and can have the 
per huge page-level TLB misses consequently. To our 
knowledge, SysMon-H is the first work that can get such 
kind of the information at OS level. 

     
     We show the sampling results using SysMon-H for 
Memcached, Redis, deepsjeng_r and mcf_r in SPEC CPU 
2017. Figure 1 shows the results of the number of TLB 
misses for the 4 applications in their address spaces, in a 5 
seconds sampling window. SysMon-H can capture the hot 
regions that consist of the frequent accessed huge pages 
whose TLB misses are high, and find out the cold regions 
in which the huge pages are with a low number of TLB 
misses, i.e., underutilized huge pages. For example, the 
Memcached’s memory accesses spans a 4GB address space, 
and most of the hot huge pages are mainly in the left half of 
the address space; the distribution of hot huge pages of 
Redis is uneven among its 22GB address space; mcf_r’s 
memory accesses are in a 350MB range, and the result of 
deepsjeng_r shows most of the pages are accessed without 
a significant difference. Based on the SysMon-H’s 
sampling results, huge pages are ranked according to their 
TLB misses. The pages with a low number of TLB miss are 
considered underutilized ones. SysMon-H records this 
information at runtime. 
     However, only considering the TLB misses might not be 
enough. People may intuitively assume that some “very hot” 

Figure 1: The number of TLB misses of Huge Pages for 4 applications in a 5-seconds sampling window. 
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Figure 2: Workflow of SysMon-H. 

 

Figure 3: H-Tree for Each Application. 

pages might be kept in the TLB, and thus cause fewer TLB 
misses as cold pages do. We conduct experiments to show 
how many pages are in this category. In our experiments, 
the pages whose TLB miss count is below 10 in the 
sampling period (5s) are classified as cold pages, and we 
further check their access_bits to discern whether they are 
hot pages or not. Here “hot” refers to the pages that are 
touched in 3 consecutive scan intervals (1s). The 
experimental results show that pages belong to this 
category exist, but the number of them is not high. With 
respect to our benchmarks, this special category of pages 
accounts for below 0.44% of the pages that are classified as 
cold ones in general. The preliminary results are basically 
consistent with the claim in [15]. More experimental results 
will be reported in future extension articles.  
     Moreover, besides the huge pages, SysMon-H can also 
collect the similar information for the base 4KB pages. 
More design details are in following sections. 

3.2 The Design Details of SysMon-H 
In this section, we show more design details of SysMon-H 
and its interaction with other OS components. Figure 2 
shows the overall idea of SysMon-H. It has two phases. In 
Phase 1, SysMon-H captures the access patterns by 
monitoring the number of TLB misses primarily, and 
further checks the access_bit for those cold regions to find 
out these “very hot” huge pages (phase 2). The rest of the 
pages are those with low utilization. SysMon-H works as 
an OS module for long-running servers, and periodically 

performs sampling for every 30 seconds (collect 
information for 5 seconds) in our prototype. 
     We design the prototype of SysMon-H based on the 
Linux kernel with version 3.16. SysMon-H collects the 
information for each application one by one. For a specific 
application, it collects the TLB misses for its pages for 5 
seconds, and then finds out the hot and cold regions; For 
these cold regions, SysMon-H further checks the access_bit 
in these huge pages’ PTE for three times, each of which is 
with a 1-second interval. If the access_bit is 1 (i.e., touched) 
for two times, SysMon-H will mark the page as hot, 
otherwise, it will be marked as a cold one. SysMon-H 
monitors the huge pages and the base 4KB pages. 
     For a specific application, SysMon-H constructs an H-
Tree for every application, and sorts its huge pages 
(denoted by Page_Struct) in H-Tree according to the 
number of TLB misses. The core data structure of H-Tree 
is the binary sort tree, and each application has its own H-
Tree. The huge pages with more TLB misses (and the 
pages are classified as “very hot” in phase 2) will be 
considered the high utilized ones. In our prototype, the 
watermark high_tlb is defined as 50, indicating that for a 
specific page whose number of TLB misses achieve 50 will 
be considered a page with high utilization. 

Illustrated in Figure 3, we show how the outputs from 
SysMon-H are organized. Using the H-Tree, with the 
watermark high_tlb as the root, pages are organized 
according to their access frequency for each application. 
The underutilized pages are located in the left part of the 
tree, thus OS can easily find these huge pages with low 
overheads. H-Tree has its application’s total number of 
TLB misses during a specific sampling interval (i.e., 30 
seconds in our prototype). If the memory bloating is serious, 
our approach will select the application whose H-Tree has 
the least number of the TLB misses and then starts to split 
its underutilized huge pages (i.e., the nodes in the left part 
of its tree). More details are in section 4. Note that the 
constants in our design (e.g., watermark, sampling interval, 
and etc.) are empirical values based on the analyses of 
programs from cloud and SPEC CPU 2017 applications. 
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These values can be adjusted as necessary in the conditions 
of environmental changes. 

3.3 The Sampling Overheads 
We show the overheads brought by SysMon-H. As its 
sampling routine has two phases, we conduct a two-stepped 
experiment to show the advantage of it.  
     Step-1: We compare the overheads caused by SysMon-
H (mainly relies on monitoring TLB misses) to the 
approach that only samples the access_bit [21,26] for the 
workloads Redis and mcf_r in SPEC CPU 2017. Our 
experimental results show that sampling access_bits (i.e., 
employing 200 loops during a sampling window) for mcf_s 
several hundred huge pages merely brings 0.19% overheads. 
In contrast, monitoring TLB misses for mcf_r brings 0.14% 
overheads in our experiment, which is lower than only 
monitoring access_bit. 
     As mcf_r in SPEC CPU 2017 has a below 1GB memory 
footprint, accounting for at most 500 2MB huge pages, the 
sampling overheads of the two approaches are not 
significant. 
     In contrast, for the cloud workload, which has a large 
number of huge pages, and often exhibits the random-like 
and irregular memory access patterns, monitoring TLB 
misses for it will not incur unnecessary overheads such as 
monitoring access_bit does (even for finding out a small 
number of randomly touched hot pages, monitoring 
access_bit has to frequently scan the entire address space). 
In the case of Redis with 22GB memory footprint on server 
side, our experimental results show below 0.1% sampling 
overheads caused by monitoring TLB misses on the Redis 
server (i.e., the client will not have obvious latency when it 
access the Redis server), while in contrast, only sampling 
access_bit brings 2.3% overheads, which may affect the 
user experience. Redis has the largest memory footprint in 
our experiments (illustrated in Figure 1), thereby we think 
the experimental results could be representative.  
     Step-2: We compare the overheads brought by handling 
the corner cases. As illustrated in Figure 2, SysMon-H 
needs to find out these “very hot” pages that are with a low 
number of TLB misses in its second phase from those 
pages that were once classified as cold. As SysMon-H 
knows these pages are primarily cold ones, it only checks 
them for 3 times (with 1-second intervals). Nevertheless, 
the prior approaches [21,26] do not have such knowledge 
and have to frequently check every huge page for capturing 
the access frequency, even for these are cold ones. 
Tracking every huge page in address space in this way 
without any distinctions brings significant overheads in 
reality, especially for the cloud computing workloads, 

whose memory footprints are very high. Our experimental 
results show that SysMon-H reduces this sampling 
overhead to around 1/20 in Step-2. 

4 THE ART OF H-POLICY DESIGN 
SysMon-H works as a kernel module in OS to obtain the 
memory pages’ utilization, guiding the memory 
management mechanism (i.e., H-Policy). In this section, we 
introduce H-Policy, which leverages the knowledge 
provided by SysMon-H and manages the huge pages 
accordingly. The H-Policy design has the following key 
rules. 
     (i) H-Policy allows splitting the huge pages that are with 
low utilization into base 4KB pages according to the 
current memory status. H-Policy uses a watermark, i.e., 
high_pressure (90%), to denote the amount of allocated 
memory in the system. When the allocated memory amount 
achieves 90%, H-Policy starts to aid the memory bloating 
by splitting the huge pages that are with low utilization. At 
the first step, it chooses the application that has the lowest 
overall TLB misses (i.e., the application that has a 
relatively lower number of TLB misses); then, for the 
application, H-Policy splits the huge pages with the low 
number of the TLB misses (i.e., the huge pages are with 
low utilization) by referring to the application’s H-Tree. 
After splitting a huge page, the freed base pages (marked 
by explicit hints) return to buddy system. As mentioned 
before, all of the required information is in this tree in 
Figure 3. 
     (ii) H-Policy will promote the base 4KB pages that have 
a high number of TLB misses in a consecutive 2MB 
memory space to a huge page. As mentioned before, hot 
pages often cause a high number of TLB misses. H-Policy 
has another watermark, i.e., promote_space (90%), 
indicating that 90% of the 4KB pages in a specific 2MB 
space are with a high number of TLB misses, and H-Policy 
should promote this 2MB space to a huge page. In our 
design, H-Policy promotes pages in every 30 seconds. 
During this process, H-Policy migrates pages and compacts 
data for creating a consecutive 2MB physical space with a 
linear mapping to the 2MB virtual space. H-Policy uses the 
OS page migration and data compaction primitives in 
Linux kernel. More details can be found in [1,4]. 
     (iii) Preserving order-9 slab in buddy system for huge 
page allocations. H-Policy is design based on the Linux’ 
buddy system [5,18], which has 11 free page lists organized 
by slabs with orders ranging from 0 to 10, and each list 
with an order R organizes pages in blocks that have 2R 
continuous 4KB physical pages. Upon a memory allocation 
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request, one larger block with a higher order can be split 
into smaller blocks of lower orders when there are not 
sufficient free pages in lower order slabs. For example, an 
order-9 block that has 512 (29) 4KB pages can be split into 
10 blocks with 256 (order 8), 128, 64, 32, 16, 8, 4, 2 pages 
and two blocks with only one page, respectively. The split 
blocks are linked to slabs with smaller orders. In reality, 
large blocks are split quickly, and thus OS has lots of 
external memory fragments. In such cases, allocating huge 
pages (2MB with 512 4KB pages) becomes either time 
consuming due to memory compaction or impossible. In 
our design, H-Policy does not split the blocks in the order-9 
slab for 4KB page allocations unless pages in other order 
slabs are all allocated (i.e., delaying splitting the blocks that 
can be directly used for allocating huge pages). Doing in 
this way, H-Policy can potentially have more 2MB blocks 
for huge page allocations in 29 free list, and OS can allocate 
a huge page in constant time without other unnecessary 
operations, e.g., breaking the large blocks or data 
compactions. This approach can also prevent the 2MB 
blocks in OS from being split quickly.   
     (iv) H-Policy will aggressively create large physical 
memory blocks by merging the adjacent small page blocks, 
in the cases where OS has a large number of fragments. H-
Policy tries to migrate fewer pages for creating the large 
blocks, as enabling page migration in Linux kernel may 
incur performance slowdown. In our design, H-Policy 
tracks the “holes” in physical memory by using counters in 
the buddy system’s slabs and is able to have large blocks 
by removing the relatively small holes in memory address 
space via the page migration operations (large holes bring 
more page migration overheads). Moreover, H-Policy has 
the interface to tune its performance. 
     Note that the watermark and other parameters in our 
prototype can be modified according to specific needs. In 
our design, H-Policy is orthogonal with the existing buddy 
system in Linux kernel. 

5  CONCLUSIONS AND FUTURE WORK 
In this paper, we show SysMon-H, an OS kernel-level 
monitoring module, which can capture the utilization of 
huge pages by combining both TLB monitoring and PTE 
sampling. With the help of SysMon-H, OS is able to make 
better use of huge pages. Our experimental results show 
that SysMon-H works well and brings low overheads. 
Furthermore, we propose H-Policy, a new memory policy 
for huge page management. With H-Policy, OS splits the 
underutilized huge pages for mitigating the memory 
bloating and promotes base pages to huge pages for 

performance, adaptively. And, as system ages, H-Policy 
can potentially have fewer memory fragments than original 
Linux kernel as it preserves 2MB contiguous blocks in 
buddy system for huge page allocations. SysMon-H and H-
Policy work together in our design.  
    Our future work includes: (1) developing an efficient 
memory compaction approach and a page migration 
mechanism for reducing the data migration overheads, and 
therefore can further improve the overall system 
performance; (2) designing a dedicated memory framework 
to efficiently supports a certain type of workload; (3) 
deploying H-Policy on platforms using NVM, and merging 
new NVM techniques together [29,30]; (4) besides the 
memory management mechanism, we would like to study 
the impact on operating system’s core components, e.g., FS 
and I/O [31-33], on emerging systems with large memory 
capacity. We hope our work could provide a valuable 
reference for future related studies. 
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