
Sys-Inventor Technical Report (PI: Lei Liu)

26/Nov., 2019

1

QoS-Aware Machine Learning-based Multiple Resources Scheduling
for Microservices in Cloud Environment

Abstract – Microservices have been dominating in the

modern cloud environment. To improve cost efficiency,

multiple microservices are normally co-located on a server.

Thus, the run-time resource scheduling becomes the pivot for

QoS control. However, the scheduling exploration space

enlarges rapidly with the increasing server resources (cores,

cache, bandwidth, etc.) and the diversity of microservices.

Consequently, the existing schedulers might not meet the

rapid changes in service demands. Besides, we observe that

there exist “resource cliffs” in the scheduling space. It not only

impacts the exploration efficiency, making it difficult to

converge to the optimal scheduling solution, but also results

in severe QoS fluctuation.

To overcome these problems, we propose a novel machine

learning-based scheduling mechanism called OSML. It uses

resources and runtime states as the input and employs two

MLP models and a reinforcement learning model to perform

scheduling space exploration. Thus, OSML can reach an

optimal solution much faster than traditional approaches.

More importantly, it can automatically detect the resource

cliff and avoid them during exploration. To verify the

effectiveness of OSML and obtain a well-generalized model,

we collect a dataset containing over 2-billion samples from 11

typical microservices running on real servers over 9 months.

Under the same QoS constraint, experimental results show

that OSML outperforms the state-of-the-art work, and

achieves around 5× scheduling speed.

I. INTRODUCTION

As cloud computing enters a new era, cloud services are

shifting from monolithic designs to microservices, which exist

as numbers of loosely-coupled functions and can work

together to serve the end-users [14,15,45,46]. Microservices

have been rapidly growing since 2018. Most cloud providers,

including Amazon, Alibaba, Facebook, Google and LinkedIn

have deployed microservices for improving the scalability,

functionality, and reliability of their cloud systems [3,5,14,46].

QoS (i.e., Quality of Service; response time) is a critical

metric for microservices. In reality, end-users keep increasing

demands for quick response from the cloud [12,20,45].

According to Amazon’s estimation, even if the end-users

experience a 1-second delay, they tend to give up the

transactions, translating to $1.6 billion lost annually [4].

In fact, the resource scheduling for QoS has become an

even more challenging problem in this era. On the one hand,

the cost efficiency policy drives providers to co-locate as

many applications as possible on a server. These co-located

microservices, however, exhibit diverse behaviors across

multiple resources, including CPU cores, cache, bandwidth,

main memory banks, I/O, etc. In addition, their behaviors

change from time to time, and from demand to demand. On

the other hand, with the increasing number of cores, more

threads share and contend for the LLC (last-level cache) and

memory bandwidth interactive with each other and pose more

challenges for resource scheduling mechanisms

[7,9,20,29,46]. All these issues enlarge the exploration space,

making scheduling more complicated and time-consuming.

Some prior approaches based on heuristic algorithms –

increasing/decreasing one resource at a time and observing the

performance variations – might not handle users’ diverse

requirements in a timely fashion on platforms with

increasingly parallel computing units and complex memory

hierarchies. Some alternative mechanisms employ on-line

clustering approaches for allocating LLC or LLC together

with main memory bandwidth among single-thread

applications. However, they are not suitable for microservices

that contain concurrent threads. Additionally, they always rely

on accurate performance models, which might bring high

scheduling overheads during runtime and incur non-negligible

porting efforts. In addition, designing an accurate

performance model is still a challenging work. Thus, the

community is expecting new directions on designing resource

scheduling mechanisms [9,10,19,25,27,29].

In this paper, we design OSML, a novel machine learning

(ML) based resource scheduling mechanism for microservices.

OSML abstracts resources and microservice run-time states as

the input and employs ML models to perform scheduling

space exploration. Over the past decade, ML has achieved

tremendous success in improving speech recognition [42],

benefitting image recognition [23], and helping the machine

to beat the human champion at Go [11,21,43]. Yet, it is still

an open question on how to use ML to enhance the scheduling

mechanism, which works as a system’s key component.

In our study, we find that there are three underlying reasons

why ML has not been widely used for resource scheduling: (1)

scarce training data, leading to inaccurate inference results

from ML models; (2) lack of clear abstractions of ML models

that are suitable for low-level resource scheduling, making the

design of overall scheduling mechanism difficult; (3) lack of

a clarity in design of software stack hierarchy when ML is

involved for scheduling, therefore it is hard to design the

interfaces and interactive control/data flow with existing OS

and hardware systems.

OSML includes the following contributions. (1) We

analyze the performance bottlenecks, and we collect the

performance traces for widely deployed microservices, e.g.,

Memcached, MongoDB, Moses, Sphinx, etc., with diverse

configurations (in Table 1), covering 72,776,880 cases

including more than 2-billion samples in a productive

environment for over 9 months. More importantly, we make

all of the training data sets along with OSML publicly

available at (Link), and we believe our efforts can benefit our

community. (2) We reveal the resource cliff (RCliff)

phenomenon in scheduling exploration, i.e., QoS suffers a

sharp slowdown even only a slight resource is deprived.

RCliff significantly affects existing schedulers’ performance.

2

Table 1. Microservice details. The max load (RPS) is with the 95th
percentile tail latency QoS target [9,14,46].

Microservice Domain RPS (Requests Per Second)

Img-dnn Image recognition 2000,3000,4000,5000,6000

Masstree Key-value store 2800,3400,3800,4200,4600

Memcached Key-value store 256k,284k,512k,768k,1024k,1280k

MongoDB Persistent database 1000,3000,5000,7000,9000

Moses RT translation 2200,2400,2600,2800,3000

Nginx Web server 60k,120k,180k,240k,300k

Specjbb Java middleware 7000,9000,11000,13000,15000

Sphinx Speech recognition 1,4,8,12,16

Xapian Online search 3600,4400,5200,6000,6800

Login Login 300,600,900,1200,1500

Ads Online renting ads 10,100,1000

(3) Based on our studies, we employ two MLP models and a

reinforcement learning model (DQN) to guide scheduling. To

the best of our knowledge, OSML is the first work that

addresses RCliff in its scheduling, providing ideal solutions in

a short time and avoiding the QoS spiking often incurred by

the existing schedulers. (4) We implement OSML in reality

based on Linux kernel with the version 4.19. And we don’t

add more components to the existing OS kernel. OSML is

designed as a co-worker of OS kernel that is located between

the OS layer and user layer.

In practice, OSML captures the microservices’ online

behaviors and forwards them to the ML models run on GPU.

OSML makes the scheduling decision according to the results

from the GPU. On average, compared to the state-of-the-art,

OSML achieves the better solutions and meets the QoS targets

within with merely 1/5 overhead.

II. BACKGROUND AND MOTIVATION

New Trend in Cloud Environments. The cloud environment

has a growing trend towards the microservice implementation

model [3,14,46]. Modern cloud applications comprise

numerous distributed microservices such as key-value storing,

database serving, access-control management, business

applications serving, etc. [14,15]. Table 1 includes several

typical microservices, which are widely used and form a

significant fraction of cloud applications [14]. These

microservices are with different features and resource

requirements. We study these microservices in this article.

New challenges for resource scheduling. Nearly a decade

before, a datacenter server equipped an Intel i7-series CPU

with 4/8 cores/threads, 8 MB LLC, and supports 12.8 GB/Sec

memory bandwidth per channel. Now, new servers have an

increased number of cores, larger LLC capacity, larger main

memory capacity, and higher bandwidth. Table 2 compares

the two typical datacenter servers used at different times. Our

platform is used as the testbed in this work.

However, although modern servers can have more cores

and memory resources than ever before, they are not fully

exploited in today’s cloud environments. For instance, in

Google’s datacenter, the CPU utilization is about 45~53% and

memory utilization ranges from 25~77% during 25 days;

while Alibaba’s cluster exhibits a lower and unstable trend,

i.e., 18~40% for CPU and 42~60% for memory in 12 hours

[24,44], indicating that a large number of resources are wasted

every day and night.

Now, we need to perform a comprehensive study on how to

Table 2. Our platform specification vs. a server used 10 yrs. before.

timely meet the resource demands for co-located

microservices. In practice, each of the microservices has its

own QoS constraint [9,37,40]. However, they have to share

and contend resources across multiple resources layers, e.g.,

cores, LLC, memory bandwidth, and banks (e.g., DRAM

banks), therefore bringing unpredictable QoS fluctuations

[9,29,22,39]. Previous studies show the contentions involve

multiple resources incur serious performance degradation and

QoS violation and propose the scheduling mechanisms at

hardware architecture, OS and user-level [8,9,19,29,41].

Nevertheless, we still face two key open questions: do the

existing approaches serve microservices well? If not, how to

design a cost-effective scheduler that avoids the common

problems in existing solutions?

III. INVESTIGATION INTO RESOURCE SCHEDULING

FOR MICROSERVICES

In this paper, we study microservices that are widely deployed

as the key components in cloud environments. The details of

them are illustrated in Table 1.

A. Understanding the Microservices - Resource Cliff

We study how sensitive these microservices behave to the

critical resources, e.g., the number of cores and LLC capacity,

on a modern commercial platform (our platform in Table 2).

We showcase the results across 6 typical microservices.

For Moses, as illustrated in Figure 1-a, with the increasing

number of cores, more threads can be mapped on them

simultaneously. Meanwhile, for a specific number of cores,

more LLC ways can benefit performance. Thus, we observe

the response latency is relatively low in the cases where

computing and LLC resources are ample (i.e., below 10ms for

Moses in the area with green color). The overall trend can be

observed from other microservices.

However, we observe the Cliff phenomenon for these

microservices. In Figure 1-a, Moses exhibits this phenomenon

clearly. For instance, in the cases where 6 cores are allocated

to Moses, the response latency is increased significantly from

34ms to 4644ms if merely one more LLC way is deprived (i.e.,

from 10 ways to 9 ways). Similar phenomena also happen in

cases where computing resource is deprived. For example, in

the cases where 13 ways are allocated, the response latency is

sharply increased from 13ms to 5662ms when we allocate 5

cores instead of 6 cores. We denote this phenomenon as

Resource Cliff (RCliff). On the RCliff (i.e., on the edge of it),

Conf. / Servers Our Platform Server (10 Years Ago)

CPU Model
Intel® Xeon® CPU

E5-2697 v4
Intel i7-860

Logical Processor
Cores

36 Cores (18
physical cores)

8 Cores (4 physical
cores)

Processor Speed 2.3GHz 2.8GHz

 Main
Memory/Channel/BW

256GB, 2400MHz
DDR4 /4 Channels /

76.8GB/s

8GB, 1600MHz DDR3 /
2 Channels / 25.6GB/s

Private L1 & L2
Cache Size

32KB and 256KB 32KB and 256KB

Shared L3 Cache Size 45MB 8MB

Disk 1TB,7200 RPM, HD 500GB, 5400 RPM, HD

GPU
NVIDIA GP104

[GTX 1080], 8GB
Memory

N/A

3

Figure 2. Sensitivity to RCliff under different RPS. We can see the RCliff is always existing, though the RPS varies. On average, RCliff
exhibits 8.80% variation (Moses is with maximum variation 15.0% and MongoDB is with minimum 2.77%).

1 To provide a better understanding of RCliff and OAA, we use the golf game as
an example to explain the underlying principle. OAA is analogous to the “putting
green’’ in a golf course. The scheduling exploration process is analogous to
hitting a ball to the putting green. And a RCliff can be considered as the boundary
of a water hazard or a sand trap. If the exploration hits a RCliff, the performance
is greatly degraded, just like hitting balls into a water hazard or a sand trap.

there would be significant performance slowdown if only one

core or one LLC way is deprived of a microservice. From

another point of view, RCliff means that a little bit more

resources will bring significant performance improvement.

Illustrated in Figure 1-a, Moses exhibits RCliff for both core

and LLC dimensions.

Compared with Moses, Img-dnn only exhibits the RCliff

phenomenon for cores. In Figure 1-b, the response latency can

be reduced from 15,000ms to 56ms if 9 cores are allocated

instead of 8 cores. Meanwhile, for a specific number of cores,

allocating more LLC ways has much less impact than cores.

Additionally, though some of the microservices’ RCliffs do not

exhibit significant performance changes, as Moses, Xapian and

Sphinx do (above 100×), we can also observe several times

variation around RCliff, e.g., MongoDB in Figure 1-f.

Is the RCliff always existing? We test these microservices

across different RPS in Table 1, and find the RCliff still exists,

though the RCliff may change according to different RPS.

Figure 2 illustrates the details. For Moses, with the increasing

of user demands, i.e., RPS ranges from 2.2K to 3K, Moses’

RCliff shifts accordingly; and, Img-dnn’s RCliff line shifts

from 3-core to 11-core cases, when the RPS ranges from 2K

to 6K. Xapian, Specjbb and Sphinx also show the trend.

To provide ideal resource scheduling policies, RCliff should

be considered seriously. RCliff alerts the scheduler not to allo-

-cate resources close to it, because it is “dangerous to fall into

cliff” and incurs a significant performance slowdown, i.e.,

even a little bit resource reducing may incur severe slowdown.

In Figure 1, we highlight each microservice’s Optimal

Allocation Area (OAA)1, which indicates the ideal number of

allocated cores and LLC ways that can bring optimal

performance. Generally, OAA is not that close to RCliff. OAA

is the goal that schedulers should achieve.

B. Is OAA Sensitive to the Number of Threads?

In practice, an arbitrary number of threads might be started for

a microservice, as people may intuitively assume that more

threads can bring a higher performance. For instance, people

may start 20 threads when Moses is launched and regardless

of only 8 cores are available. Here, we come up to the question:

is the OAA sensitive to the number of threads, i.e., if one starts

more threads, will the OAA change?

To further study this problem, for a specific microservice,

we start a different number of threads and map them across a

different number of cores (the num. of threads can be larger

than the num. of allocated cores). From the experiments, we

observe two things. (1) More threads do not necessarily bring

more benefits. Take Moses as an example, 8 threads mapped

to 8 cores can be the ideal solution with low response latency

(in the OAA); however, when more threads are started (e.g.,

20~36), the overall response latency can be higher (as illustr-

Figure 1. Sensitivity to resource allocation under different policies. Each col./row represents a specific number of LLC ways/cores allocated
to an application. Each cell denotes the microservice’s response latency under the given number of cores and LLC ways. The Redline shows
the RCliff. The green color cells show allocation policies that bring better performance (low response latency). OAA is also illustrated for
each microservice. We test all of the microservices in Table 1. Due to the space problem, we only list several of them. As we don’t want the
figures to look too dense, we only have some typical data on them.

4

Figure 3. OAA exists regardless of the num. of concurrent threads. Due to the space problem, we only show some of the cases.

-ated in Figure 3). A similar trend can be observed in other

microservices. The underlying reason lies in more memory

contentions at memory hierarchy and more context switch

overheads, thus leading to a higher response latency [17,36].

(2) The OAA is not quite sensitive to the number of concurrent

threads. Illustrated in Figure 3, although the overall latency

becomes higher with the increasing number of threads, the

OAA is always there. For Moses in Figure 3, when 20/28/36

threads are mapped to 7~25 cores, around 8/9-core cases

always perform ideally. Other applications also show the

similar phenomenon, though the OAA differs from each other.

For LLC ways in OAA, as LLC is always a scare resource,

it should be allocated carefully. For each microservice, Figure

3 shows the LLC allocations in their OAA. If the QoS for a

specific microservice is satisfied, e.g., below 10ms latency for

Moses, LLC ways should be allocated as less as possible (e.g.,

assigning 11 ways is a better policy than allocating 12/13

ways), saving LLC space for other applications. We also try

to allocate fewer cores to meet the QoS target for saving

computing resources. To this end, we conclude that the OAA

is always existing, and it is not too much sensitive to the

number of threads in practice. Here, we meet a question: how

to find an Optimal Allocation Area at runtime efficiently?

C. Existing Schedulers might not be Effective

Through our study, we find the existing schedulers often have

three shortcomings to meet microservices. (1) Entangling

with RCliff. As many schedulers often employ heuristic

algorithms, i.e., they increase/reduce resources until the

monitor alerts that the system performance is suffering a

significant change (e.g., a severe slowdown), these

approaches could incur an unpredictable latency spiking. For

example, if the current resource allocation is in the base of

RCliff (i.e., the base area is with yellow color in Figure 1-a),

the scheduler will attempt to achieve OAA. However, as the

schedulers do not know the “location” of OAA, it has to

increase resources step by step in a fine-grain way, thus the

entire scheduling process from the base of the RCliff will

incur very high response latency for microservices. For

another example, if the current resource allocation is on the

(edge of) RCliff or close to RCliff, a fine-grain resource

reduction for any purpose could cause a severe performance

slowdown, incurring a sudden and sharp performance drop for

microservices. The previous efforts [9,24,41,45] find there

Figure 4. A case for heuristic scheduling approach.
would be about hundreds/thousands of times latency jitter,

indicating the QoS cannot be assured during these periods. (2)

Failing to have an optimal schedule for microservices by

simultaneously considering a combination of multiple

resources – core counts, LLC ways and bandwidth usage.
Previous studies [9,19,24,29] show that the core computing

ability, cache hierarchy, and memory bandwidth are

interactive factors. Solely considering a single dimension for

resource scheduling of co-located applications often leads to

suboptimal QoS and performance. However, existing

schedulers using heuristic or model-based algorithms are

usually failed to consider multi-dimensions simultaneously,

resulting sub-optimal solutions. (3) Incurring high

overheads. The heuristic approaches’ time consuming is not

negligible. For example, the state-of-the-art [9] brings around

20~30 seconds on average (up to 60 seconds in the worst cases)

to find an ideal co-locating scheme when 3~6 microservices

are co-running together. [10,32,34] also show the heuristics

inefficiency due to the high overheads on scheduling

resources with varies and complex configurations.

We conduct experiments to show the issues. We try the

similar idea in [9], which increases/decreases one-dimension

resource at a time by a fine-grain trial-and-error way. The

baseline is the optimal case, in which microservice solely runs

on our platform with all available resources. Figure 4 shows

the performance of 3 microservices (normalized to baseline).

As illustrated, the whole scheduling process incurs a high and

unpredictable response latency (e.g., about 500~800× latency

at time point 30 for Img-dnn and Xapian; at time point 60 for

Moses) and taking a long time (about 100 seconds) to finally

achieves a better scheduling solution at time point 108 for all

applications. We observe that the scheduler keeps trying to

identify the “optimal” allocation by reducing/increasing

core/cache resources for each application because it is not

aware of RCliff and OAA. This design will quickly “jump into

5

the cliff,” incurring a high response latency that is hard to be

recovered in a subsequent short period, especially in the cases

where multiple resources need to be involved in scheduling.

Toward this end, we claim it is time to design a new

resource scheduling approach for microservices. Though the

OS is arguably responsible for scheduling, we have the insight

that ML is potential to offer an optimized resource scheduling

solution and with the nature of handling such complicated

case in a considerable low overhead.

IV. THE ART OF USING ML FOR RESOURCE

SCHEDULING

In this paper, we use machine learning (ML) to build a new

resource scheduler, providing robust support for OS. We

denote our design as OSML. We build fine-grained models in

OSML to achieve accurate prediction results. To effectively

handle the diverse cases in reality, we design 3 ML models,

denoted as Model-A/B/C, work cooperatively to provide

solutions. Model-A is used for finding the Optimal Allocation

Area (OAA) and the RCliff for a specific microservice;

Model-B is used for trading the QoS and allocated resources;

Model-C is an online learning model that dynamically handles

the cases where misprediction occurs, environment and user

demand changes, resources sharing and other unseen cases

happen. To train these models, we collect the parameters in

Table 3. More details refer to the following contents.

A. Model-A: Finding OAA

Model-A’s Target. For a specific microservice, Model-A is

used for inferring the resource allocation policies. At the

runtime, after a sampling period (within 2 seconds by default),

OSML enables Model-A to obtain the OAA (Optimal

Allocation Area) to meet its QoS constraint. Besides, Model-

A also outputs the RCliff in the current environment. OAA is

slightly away from the RCliff, because OSML is designed to

incurring a significant QoS slowdown, when some of a

microservice’s resources are shared or deprived of. For

example, if a microservice needs at least 3 cores and 6 MB

LLC capacity to meet its QoS (i.e., RCliff), an OAA might

have 5 cores and 8 MB LLC capacity. OAA will guide the OS

allocator not to blindly allocate core, LLC ways and local

bandwidth, potentially reducing the memory interferences

among microservices in co-location cases. In the cases where

the idle resource is ample, Model-A can have the solution after

a short sampling period (less than 2 seconds).

The neural network used in Model-A is a 3-layer multi-

layer perceptron (MLP), each layer is a set of nonlinear

functions of a weighted sum of all outputs that are fully

connected from the prior one [16,21]. There are 40 neurons in

each hidden layer. For each running microservice, the input of

the MLP includes 11 items in Table 3. The output of this MLP

includes the OAA, OAA bandwidth (bw requirement in OAA),

and the RCliff for a specific microservice.

Model-A Training. Collecting training data is an expensive

task. To cover the common cases, we have collected the

performance traces according to the parameters in Table 3 for

the microservices in Table 1, primarily on our platform, for

over 9 months. The details are as below.

Table 3. The Involved Parameters
Feature Description Used in Model

IPC Instructions per clock A/B/C

Cache Misses LLC misses per second A/B/C

MBL Local memory bandwidth A/B/C

CPU Usage The sum of each core’s utilization A/B/C

Memory Util The memory footprint of an app A/B/C

Virt. Memory Virtual memory in use by an app A/B

Res. Memory Resident memory in use by an app A/B

LLC Occupied LLC footprint of an app A/B/C

Allocated Core The number of allocated cores A/B/C

Allocates Cache The number of allocated LLC ways A/B/C

Core Frequency Core Frequency at runtime A/B/C

QoS Slowdown Percentage of QoS slowdown B

Resp. Latency Average latency of a microservice C

For each microservice with a specific RPS demand (e.g.,

RPS-2200 for Moses), we first launch 36 threads and map

them across 36 cores, 35 cores, 34 cores and so on untill 1

core, respectively; for each threads-cores mapping case, we

allocate LLC with different ways ranging from 1 to 20

(maximum) and we collect the performance traces

accordingly. Next, we launch 35 threads for the microservice

and map them to 36~1 core with LLC allocations from 1~20

ways, and collect the performance traces. Similarly, we

conduct the mapping and trace collecting for a number of

threads from 34 to 1, respectively. In summary, for each

microservice with every common RPS demand, we sweep 36

threads to 1 thread across LLC allocation policies ranging

from 1 to 20 ways and map the threads on a certain number of

cores and collect the performance trace data accordingly. In

each case, we label the corresponding OAA, RCliff and OAA

bandwidth. For example, Figure 5 shows a data collection

case where 8 threads are mapped onto 7 cores with 4 LLC

ways. We feed the microservices with diverse RPS (Table 2),

covering most of the common cases.

Finally, we collect 171,072,000 data tuples, covering

1,425,600 allocation cases with different numbers of cores,

LLC ways, and bandwidth. We believe that more traces lead

to better model accuracy. Moreover, as the workload features

are converted to comprehensive traces consisted of hardware

parameters, we think that they can be used for fitting and

training MLP to provide predictions for the unseen cases.

Model-A Function. Model-A uses the function ReLU

(Rectified Linear Unit), i.e., f (x) = max (0, x), as the

activation function. It is efficient and effective, especially for

backpropagation. The loss function is defined as follows.

𝐿𝑀𝑆𝐸 =
1

𝑛
∑(𝑠𝑡 − 𝑦𝑡)2

𝑛

𝑡=1

Gradient descent is Adam Optimizer, in which 𝑚𝑡 and 𝑣𝑡 are

defined as:
𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡; 𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2) ∙ 𝑔𝑡

2

And, the deviation correction includes:

�̂�𝑡 =
𝑚𝑡

1−𝛽1
𝑡; �̂�𝑡 =

𝑣𝑡

1−𝛽2
𝑡

Gradient update is defined as:

θ𝑡+1 = θ𝑡 −
𝜂

√�̂�𝑡+𝜀
�̂�𝑡.

B. Model-B: Balancing QoS and Resources

Model-B’s Target. In the limited resource condition, Model-

B works as a complementary of Model-A to trade QoS for res-

6

Figure 5. Model-A data collection. Figure 6. Model-B training.

-ources. It works in the cases where several microservices are

already located on a server, and the idle cores and unallocated

LLC capacity cannot meet the new application’s requirements.

Then, Model-B will try to deprive the already existing co-

located microservices of some resources with their

allowable/minimum QoS slowdown and allocate these

resources to the new microservice. For short, Model-B is

designed for inferring the least amount of resources that

would be deprived of from a microservice with a specific QoS

slowdown.

Compared with Model-A, the input of Model-B has one

more item, i.e., QoS slowdown. Model-B’s input also includes

the parameters that are similar to those used in Model-A.

Model-B’s output contains the policies that, with the

acceptable QoS slowdown (controlled by OSML), how many

resources can be deprived of from a specific microservice. As

the computing units and memory resource can be fungible [9],

Model-B’s output includes 3 policies, i.e., <cores, LLC ways>,

<cores dominated, LLC ways> and <cores, LLC ways

dominated>, respectively. The items in the tuple are the

number of cores and LLC ways that can be deprived and

reallocated to others with the corresponding QoS slowdown.

The term “cores dominated” indicates the policy that using

more cores to trade the LLC ways, and vice versa. The

acceptable QoS slowdown is determined according to the user

requirement or the microservices’ priority. We denote the

outputs from Model-B as B-Points.

By using Model-B, OSML can have an ideal resource

allocation solution when resources are limited. For example,

when a microservice (called E) is scheduled to a server that

already has 4 co-located microservices, OSML enables

Model-A and then finds out that to meet E’s QoS, OSML

should provide at least n more cores and m more LLC ways

(denoted as <n+, m+>). Then, OSML enables Model-B with

predefined QoS slowdown on each running microservice to

output B-Points. Finally, OSML tries to match <n+, m+> with

B-Points and find the best solution, which should have the

minimal impact on current allocation status for the existing

applications. Moreover, OSML will return failure to upper-

level scheduler if it fails to find an acceptable solution. More

details can be found in Algorithm_1.

Besides Model-B, we also design Model-B’ (a shadow of

Model-B) for predicting how much QoS slowdown will suffer

if a certain amount of resources is deprived of from a specific

microservice. The NN structure of Model-B’ is similar to

Model-B.

Model-B Training. For training Model-B and B’, we

reduce the allocated resources for a specific microservice

from its OAA by fine-grain approaches, as illustrated in

Figure 6. The reduction has three angles, i.e., horizontal,

oblique, and vertical, corresponding to different outputs of

Model-B, i.e., B-Points include <cores dominated, LLC

ways>, <cores, LLC ways>, <cores, LLC ways dominated>,

respectively. For each fine-grain resource reduction step, we

collect the corresponding QoS slowdowns, and then label

them as less equal to (<=) 5%, 10%, 15% and so on,

respectively. Examples are illustrated in Figure 6, which

shows the cases with the corresponding QoS slowdown, i.e.,

the B-Points. We collect the training data sets for every

microservice in Table 1. The training data sets are with

350,697,600 data, covering 2,922,480 cases.

Model-B Function. We design a new loss function for

Model-B,

𝐿 =
1

𝑛
∑ (

𝑦𝑡

𝑦𝑡 + 𝑐
× (𝑠𝑡 − 𝑦𝑡))

2
𝑛

𝑡=1

,

in which 𝑠𝑡 is the prediction output value of Model-B, 𝑦𝑡 is

the labeled value in practice, and C is a constant that is

infinitely close to zero. We multiply the difference between 𝑠𝑡

and 𝑦𝑡 by
𝑦𝑡

𝑦𝑡+𝑐
 for avoiding adjusting the weights during

backpropagation in the cases where 𝑦𝑡 = 0 and
𝑦𝑡

𝑦𝑡+𝑐
= 0

caused by some non-existent cases (we label the non-existent

cases as 0, i.e., 𝑦𝑡 = 0, indicating we don’t find a resource-

QoS trading policy in the data collection process). Model-B’

also uses this loss function.

C. Model-C: Handling the Changes On the Fly

Model-C’s Target. Model-C handles the cases where QoS is

violated due to environment changes, user

demand/application behavior changes and other unseen

problems happen. And, Model-C can correct the impropriate

resource allocations (e.g., resource wasting) on the fly and can

collect data for on-line training. Figure 7 shows the Model-C

in a nutshell. In our design, the critical component in Model-

C is an enhanced Deep Q-Network (DQN) [38], which is

redesigned according to the new scheduling requirement.

Model-C contains two neural networks, i.e., Policy Network

and Target Network. The Policy Network is a 3-layer MLP

that includes 3 hidden layers (each layer has 30 neurons). The

structure of Target Network is identical to the Policy Network.

Policy Network’s input consists of the parameters in Table 3,

and the outputs are resource scheduling actions (e.g.,

reducing/increasing a specific number of cores or LLC ways)

and the corresponding expectations (defined as Q(action)).

These actions are defined as Action_Function: {<m, n> | m ∈

[-3,3], n∈[-3,3]}, in which a positive m denotes allocating m

more cores for an application and a negative m means

depriving it of m cores. The n indicates the actions on LLC

ways. The scheduling action with the maximum expectation

value (i.e., the action towards the best solution) will be

selected in ① and executed in ②. In ③, Model-C will get the

Reward value according to the Reward Function. Then, the

tuple <Status, Action, Reward, Status’> will be saved in the

Experience Pool in ④ , which will be used during online

training. The terms Status and Status’ denote system’s status

described by the parameters in Table 3 before and after the

Action is taken. Model-C can quickly have the ideal solutions

7

Figure 7. Model-C in a nutshell.
in practice (around 2 steps). Please note that in ① Model-C

might randomly select an Action instead of the best Action

with a 5% chance. By doing so, OSML can avoid falling into

a local optimum [38].

Model-C’s Reward Function. The reward function of

Model-C is defined as follow:

 If 𝐿𝑎𝑡𝑒𝑛𝑐𝑦𝑡−1 > 𝐿𝑎𝑡𝑒𝑛𝑐𝑦𝑡:

 R𝑡 = log(𝐿𝑎𝑡𝑒𝑛𝑐𝑦𝑡−1 − 𝐿𝑎𝑡𝑒𝑛𝑐𝑦𝑡) − (△ 𝐶𝑜𝑟𝑒𝑁𝑢𝑚 +

 △ 𝐶𝑎𝑐ℎ𝑒𝑊𝑎𝑦)

If 𝐿𝑎𝑡𝑒𝑛𝑐𝑦𝑡−1 < 𝐿𝑎𝑡𝑒𝑛𝑐𝑦𝑡:

 R𝑡 = −log(𝐿𝑎𝑡𝑒𝑛𝑐𝑦𝑡 − 𝐿𝑎𝑡𝑒𝑛𝑐𝑦𝑡−1) − (△ 𝐶𝑜𝑟𝑒𝑁𝑢𝑚 +

 △ 𝐶𝑎𝑐ℎ𝑒𝑊𝑎𝑦)

 If 𝐿𝑎𝑡𝑒𝑛𝑐𝑦𝑡−1= 𝐿𝑎𝑡𝑒𝑛𝑐𝑦𝑡 :

 R𝑡 = −(△ 𝐶𝑜𝑟𝑒𝑁𝑢𝑚 + △ 𝐶𝑎𝑐ℎ𝑒𝑊𝑎𝑦),

where 𝐿𝑎𝑡𝑒𝑛𝑐𝑦𝑡−1 and 𝐿𝑎𝑡𝑒𝑛𝑐𝑦𝑡 denotes the latency of

previous and current status, respectively; and △ 𝐶𝑜𝑟𝑒𝑁𝑢𝑚/△
𝐶𝑎𝑐ℎ𝑒𝑊𝑎𝑦 is the change of the number of core and LLC

ways, respectively. This function gives higher rewards and
expectations to the Action that can lead to less resource
usage and lower latency. Thus, no matter how many
resources the previous allocation policies provides,
Model-C can guide to allocate appropriate resources.
Details on using Model-C are in Algorithm_2 and 3.

Offline Training. The format of the training data tuple

includes Status, Status’, Action and Reward, which denote the

current status of a microservice, the status after these actions

are conducted (e.g., reduce several cores or allocate more LLC

ways) and the reward calculated using the above functions,

respectively.

 In terms of the training dataset for Model-C, we rely on the

data set used in Model-A training. The process is as follows.

In general, 2 tuples in Model-A training dataset are selected

to denote Status and Status’, and we further get the differences

of the resource allocations between the two status (i.e., the

actions that are responsible for the status shifting). Then, we

use the reward function to have the reward accordingly. These

4 values form a specific tuple in Model-C training dataset. In

practice, as there are a large number of data tuples in Model-

A training data set, it is impossible to try every pair of tuples

in the dataset, we only select two tuples from resource

allocation policies that have less than or equal to 3 cores, or 3

LLC ways differences. For example, we use 2 data tuples that

one is from <3 cores, 4 LLC ways> allocation while another

is from <5 cores, 4 LLC ways> allocation, implying the

actions that 2 more cores are allocated or reduced. Moreover,

we also collect the training data in the cases where LLC shar-

Figure 8. The overview of OSML.

-ing occurs among different microservices and save them in

the Experience Pool. Using them, Model-C can have the first

step knowledge on selecting actions in resource sharing cases,

and avoid the stuck instances in practice. To sum up, we have

1,710,726,000 data tuples in Model-C training data set.

Online Training. Model-C also supports online training.

The overall workflow is shown in right part of Figure 7.

Model-C randomly selects some data tuples (200 by default)

from the Experience Pool. Then, for each tuple, Model-C uses

the Policy Network to have the Action’s expectation value

(i.e., Q(Action) [38]) with the Status; uses the Target Network

to have the expectation values of Status’ across the actions in

Action_Function and then finds the max one, i.e.,

Max(Q(Action’)). Illustrated in Figure 7, the Loss Function is

calculated as (Reward + γMax(Q(Action’) – Q(Action)))2,

indicating whether OSML can have an optimal scheduling

solution by taking this Action. The Policy and Target Network

will be updated according to the online training results. After

updating, they perform better, providing more accurate action

predictions for the unseen cases.

D. Discussions

Why do these models work? These models are trained using

extensive data sets that reflect the correlations between the

computing units and memory hierarchy across diverse typical

workloads. Model-A and B are carefully tuned, and the

training data sets continue to grow for more platforms,

configurations, and workloads. Model-C is a dynamic model,

which collects the runtime information for online training,

correcting the misprediction caused by Model-A/B while

enhancing itself through online learning.

Why don’t we use Model-C directly? Model-C is with an

online dynamic adjusting approach. Model-C’s action is based

on Model-A/B’s output. With Model-A and B, Model-C can

try to have the solutions from the predicted OAA, saving time

on exploring the scheduling space and providing more

accurate results. In practice, Model-C only needs some small

calibrations to achieve the ideal results, performing better than

heuristic-based approaches.

V. OSML: SYSTEM DESIGN

This section details the overall system design of OSML. The

key components include the central controller, profiling

module, and ML models. The ML models work on GPU. The

profiling module captures the applications’ online information,

and then forward them to the ML models. Central controller

receives the ML models’ results and makes scheduling

decisions accordingly. Figure 8 illustrates OSML in a nutshell.

A. The Central Controlling Logic

The central controller has the overall responsibility to

coordinate the ML models, manage the data/control flow and

8

Figure 9. OSML’s central logic.
report the scheduling results. Figure 9 shows its whole control

logic. The scheduling principle is attempting to reach OAA

without resource sharing for microservices first, and only

enabling resource sharing in exceptional cases. More details

are as follow.

A.1. Allocating Resources for Microservices

During the runtime, OSML enables Model-A to have the

OAA and RCliff for each new coming application. Model-A

has the duty of resource allocation in the first step. Model-B

could help to co-locate a new one in the cases where the

idle/unallocated resources cannot meet its QoS requirement.

If the current idle resources are not sufficient to meet the QoS

requirement for this microservice, OSML will enable Model-

B to deprive some resources of other co-locating

microservices with the acceptable QoS slowdown (controlled

by OSML or upper-level scheduler), and allocate them to the

new coming one. After, OSML will conduct the resource

scheduling accordingly or reports the exceptional.

Algorithm_1 shows how OSML uses Model-A and B in

practice. Model-A’s output includes the OAA and RCliff,

alerting the central scheduler to notice the allocation policies

that might incur QoS slowdown sharply. And, in the resource

depriving process, OSML moves away from the OAA to

somewhere close to RCliff (saving resources), but will not

easily step into it unless expressly permitted (see Algo. _4).

---------------------------------Algorithm_1--------------------------------

Function: Using ML to have OPT resources allocations. In practice,

only one policy in OAA will be selected.

1. For a new coming microservice, map it on the idle resources and

capture its runtime parameters for n seconds (n is 2 by default)

2. Forward these parameters to Model-A

3. Model-A outputs: (1) OAA to meet the target QoS; (2)OAA bw

(3) RCliff in current environment

4. IF idle resources are sufficient to meet OAA THEN

5. Allocate resources with a specific policy in OAA

6. END IF

7. IF idle resources are not enough THEN //Enabling Model-B

8. Calculate the difference between the idle resources and OAA,

i.e., <+cores, +LLC ways> //required resource to meet its QoS

9. Calculate the difference between the idle resources and RCliff,

i.e., <+cores’, +LLC ways’> //should be used carefully

10. FOR each previously running microservice DO

11. IF the microservice can tolerate a certain QoS slowdown

THEN

12. Use Model-B to infer the B-Points with the accept-

able QoS slowdown

13. Model-B outputs the B-Points, i.e., <cores, LLC

ways>, <cores dominated, LLC ways>, and etc.

14. END IF

15. END FOR

16. Record each microservice’s B-Points with the QoS slowdown

17. Find the best-fit solution to meet OAA/RCliff according to B-

Point with at most 3 apps involved //The less the better

18. IF the solution could meet OAA or RCliff THEN

19. Adjust allocations according to OAA (RCliff is alternative)

20. ELSE

21. The microservice cannot be located on this server without

sharing resources with others

22. END IF

23. END IF //Enabling Model-B

24. Report to upper scheduler about the scheduling policies #

A.2. Dynamic Adjusting

In our design, OSML has the capability of handling the cases

where (i) environments or user demands change, leading to

Model-A/B performs inaccurately; (ii) misprediction happens;

(iii) resource sharing is allowed for co-locating more

applications and (iv) unseen cases occur.

Figure 9 also demonstrates the dynamic adjusting process,

in which Model-C works as a dominated role. In the runtime,

OSML monitors each microservice’s QoS status. If the QoS

violation is detected, the central controller will enable

Algorithm_2, which helps to allocate more resources and

achieve the ideal QoS. It usually achieves the goal within two

steps. If OSML finds a microservice is allocated with more

resources than its OAA (i.e., wasting resources), Algorithm_3

will be used to reclaim them.

Moreover, if all of the co-located microservices’ resources

are close to their RCliff and the upper scheduler must place a

new application onto this server, Algorithm_4 will be enabled

to find a solution that allows the applications sharing some

resources with others. Note that Algorithm_4 might cause

resource sharing over the RCliff, and thus may incur higher

latency. OSML will report these situations to the upper

scheduler and ask for the decision. If the slowdown is not

allowed, the corresponding actions will be withdrawn. In

Algorithm_4, Model-A is used in the first step to infer how

many resources are needed by the program in addition to the

currently allocated resources. Then, Model-B is enabled to

predict the QoS slowdown if the required resources are

partially/entirely shared with a specific microservice.

---------------------------------Algorithm_2--------------------------------

Function: handling the cases in which resources are insufficient

1. FOR each allocated microservice DO

2. IF its QoS is not satisfied THEN //Higher latency

3. Obtain and forward the current running status parameters

to Model-C

4. Model-C selects a specific action in the Action_Fun

5. Return Model-C’s output (<cores+, LLC ways+>) to OS-

ML’s central controller

6. IF <cores+, LLC ways+> can be satisfied within current

idle resources THEN

9

7. OSML allocates, and GOTO Line 2

8. ELSE

9. Call Algorithm_4 //Share resources w/ others?

10. END IF

11. END IF; END FOR #

---------------------------------Algorithm_3--------------------------------

Function: handling allocation cases where resources are surplus

1. FOR each allocated microservice DO

//More resources are allocated, wasting resources.

2. IF its allocated number of cores/LLC Ways > its RCliff’s+2

THEN

3. Forward current status parameters to Model-C

4. Model-C selects a specific action accordingly

5. Return Model-C’s output (<cores-, LLC ways->) to

OSML’s controller

6. OSML reduces the resources accordingly

7. IF its QoS is not satisfied now THEN

8. OSML withdraw the actions //Rollback

9. END IF

9. END IF; END FOR #

---------------------------------Algorithm_4--------------------------------

Function: handling resources sharing among applications

//OSML try to allocate resources cross over RCiff

1. Obtain how many resources a microservice needs, i.e., <+cores,

+LLC ways>, from the neighbors to meet its QoS using Model-A

2. FOR each potential neighbor App DO

3. Create sharing policies, i.e., {<u,v>|∀u<=(+cores) ∧

∀v<=(+LLC ways); u, v>=0}

4. Use Model-B’ to predict the neighbor’s QoS slowdown

according to {<u, v>}

5. END FOR

6. IF the neighbors’ QoS slowdown can be accepted by OSML

THEN

7. OSML conducts the allocation

8. ELSE

9. OSML migrate the microservice to another node

10. END IF #

B. Parameters and the Design Considerations

OSML monitors the performance parameters of each co-

located jobs using performance counters, and checks whether

they have met their QoS targets. OSML has configured the

default scheduling period to be 2 seconds, during which the

sampling model can observe enough information for making

decisions. If the observation period is too short, other factors,

e.g., cache data evicted from the cache hierarchy, context

switch, may interfere with the sampling results. Moreover, we

find the OSML indeed performs well with other interval

settings and allows the flexibility to be configured as needed.

ML model selection. We want to leverage our large-scale

training traces and also achieve an accurate prediction for

complex unseen cases. As a supervised ML algorithm, MLP

can satisfy both of our requirements. We also want to predict

future actions based on historical information, so a proper

reinforcement learning model is also required. We use DQN

because of its high accuracy, high efficiency, and low

complexity. According to our evaluation, these models

achieve both high prediction accuracy and low latency. Thus,

they are the ideal choice for resource scheduling with OS.

Bandwidth Scheduling. OSML partitions the overall

bandwidth for each co-located microservice according to the

ratio BWj/ΣBWi. BWj is a microservice’s OAA bandwidth

requirement, which is obtained from the Model-A. Note that

such scheduling may require specific hardware support. For

example, a CPU having MBA support [1,2] can achieve this

goal with OSML.

C. Implementation

We design OSML that works cooperatively with OS (Figure

8). As the kernel space lacks the support of ML libraries,

OSML lies in the user space that exchanges information with

OS kernel. We do not modify the OS kernel significantly.

OSML is implemented using python and C. It employs Intel

CAT technology [1] to control the cache way allocation, and

it supports dynamically adjusting the cache allocation. OSML

uses Linux’s taskset and Intel MBA [2] to allocate specific

cores and bandwidth to a microservice. OSML captures the

online performance parameters by using the pqos tool [1] and

PMU [2]. The sampling interval is 1 second. The ML models

are based on TensorFlow [6] with the version 1.13.0-rc0.

VI. EVALUATION
A. Methodology

We evaluate OSML on our testbed in Table 2. The metrics

include the QoS and EMU, which are measured by the

response latency of microservices and the max aggregated

load of all collocated microservices [9].

B. OSML Effectiveness

We compare OSML with the following competing policies:

(1) PARTIES [9]. It is among the state-of-the-art studies,

which makes incremental adjustments in one-dimension

resource at a time until QoS is satisfied for all of the

applications. The core mechanism in [9] is like an FSM [52].

We implement it in our work, as it is not opensource.

(2) Unmanaged Allocation (baseline). This policy randomly

maps the microservice’s threads to cores and doesn’t control

the allocation polices on LLC and other shared resources. This

policy relies on the OS to schedule multiple resources.

(3) Oracle. We obtain these results by exhaustive offline

sampling and find the best allocation policy. It indicates the

ceiling that the schedulers try to achieve.

Figure 10~12 shows the highest allowable load of co-

located microservices without QoS violation for different

policies. Figure 10 compares the performance by using Xapi-

an, Img-dnn, and Moses. Generally, PARTIES outperforms

the unmanaged cases, and OSML exhibits better performance

than PARTIES. As illustrated in Figure 10-c, under the same

QoS constraint, OSML can help to support higher loads for

Moses in highlighted cells with red boxes. Even for these cells

with identical load, OSML can achieve it in low overhead (at

most 2~3 actions for each application), on average. Figure 11

shows the cases where 4 services (Moses, Specjbb, Xapian,

Sphinx) are co-located. Sphinx is in the background and with

10% of the maximum load. Figure 11-c highlights the cells in

10

2 Figure 10~12 show the results when we collocate 3~4 microservices together.
The heatmap values are the percentage of third microservice’s (e.g., Moses in
Fig.10, Xapian in both 11 and 12) achieved max load without QoS violations in
these cases. The x and y-axis denote the first and second app’s fraction of their
max loads (with QoS target), respectively. Cross means QoS target cannot be
met.

which OSML achieves better solutions, indicating that OSML

can satisfy a higher RPS for Xapian. Moreover, to our surprise,

we find OSML can explore allocation policies the previous

approach cannot achieve. For example, the highlighted cells

with blue boxes in 11-c, OSML is able to support 10% of the

maximum load of Xapian when Moses is with 90% and

Specjbb is with 10~20%, respectively.

Figure 12 further shows OSML effectiveness for

scheduling 4 microservices that include Masstree, Specjbb,

Xapian, and MongoDB (with 50% of maximum load – RPS-

5000 – in the background). We also observe that OSML can

support a higher percentage of load (shown in highlighted

cells in Figure 12-c). Figure 12-d shows Oracle cases. We can

see that OSML behaves similarly to Oracle. For these

exceptional cases, it can also support 90% of Oracle, e.g., the

highlighted cells in Figure 12-d, in which Xapian is with 100%

of its max loads. Generally, Figure 15 shows that OSML can

bring higher EMU [9] than PARTIES.

The underly reasons are multi-fold. (1) OSML can achieve

OAA in a short time and change the scheduling policies

quickly according to the workloads’ demands by using ML

models. In other words, it can respond quickly to rapidly

changing situations. Thus, we can see it meets higher loads in

some cases. (2) OSML allows flexible sharing some of the

LLC ways among microservices (more allocation policies),

therefore bringing higher resource utilization. Always

enabling strict partitioning among microservices can hurt

performance. (3) OSML doesn’t use the expensive heuristic

“trial and error” approach and can explore different resource

combinations using algorithms with ML technologies.

Moreover, we find the previous work cannot quickly achieve

the ideal solution when more than 4 challenging workloads

are running together. And it needs carefully tuned; otherwise,

it will incur high response latency due to RCliff. Moreover,

once it meets the QoS constraint, it stops. Therefore, it cannot

find more allocation policies to meet more workloads.

Figure 13 explores resource usage during the scheduling

period for workloads in Figure 10. We observe that OSML

performs differently with PARTIES, spending less time to

achieve OAA (trying fewer scheduling actions), and saving

more cores and LLC ways – idle core/LLC ways. The main

reason is OSML quickly achieves microservices’ OAA, but

the “trial and error” way has to search in the large scheduling

exploration space step by step. Apparently, if OSML is used

widely, it will help to save banquet for cloud providers.

C. Performance for Fluctuating load

We evaluate OSML employing dynamically changing load.

The results are normalized to the baseline (solely running

cases, similar to the cases in Figure 4). As illustrated in Figure

14, in the beginning, Moses with 50% of max load arrives.

Then Img-dnn and Xapian with 40% of max load arrive. We

observe their response latency increase caused by the resource

contentions among them. PARTIES uses “trial and error”

algorithm to allocate resources for each application one by

one, incurring relatively high latency for others, though

Xapian gets more resources and behaves better for a short time.

On contrast, OSML performs better, making resource

scheduling decision quickly, and thus brings lower latency for

all of them. Note that their response latency increases when a

new service (MongoDB) comes at time point 80. OSML

quickly detects it and adjusts the resource allocation policies;

thus, their response latency decreases accordingly. However,

previous work cannot handle this case in a timely fashion; thus,

Moses is always with high latency until it is migrated to

another server, and Xapian experiences a latency fluctuation

before meeting its QoS constraint. Note the sub-figures for the

num. of cores/LLC ways, OSML only uses a few of

scheduling actions, indicating it can achieve better solutions

with low overhead. However, the previous approach has to try

many allocation actions. Figure 15 summarizes the average

scheduling overhead is merely 1/5 of the prior approach.

From the time point 224, we increase the load for Xapian,

and find its latency increases as a result for PARTIES. Yet,

OSML helps to meet Img-dnn’s demands in a short time using

ML models. Moreover, OSML saves resources and thus can

serve more applications. Figure 13 shows the resource usage

for cases in Figure 10, it saves cores and thus can allocate

them for memory non-intensive microservices. Shown in

Figure 14, Login comes at about the time point 160, OSML

allocates idle cores to meet it without sharing or depriving

others of resources. Moreover, OSML handles Txt index (an

unseen one) well by scheduling cores to it, but PARTIES has

Figure 102. Co-location of Xapian, Img-dnn and Moses. Figure 112. Co-location of Moses, Specjbb, Xapian and Sphinx.

Figure 122. Co-location of Masstree, Specjbb, Xapian and MongoDB. Fig.13. Resource usage comparisons.

11

Fig.15. OSML’s performance. Fig.16. OSML’s scheduling cases.

Figure 14. How OSML performs in reality.

to let it share cores with Memcached. Therefore, Memcached

is with a better performance with OSML.

For RCliff and OAA, Figure 16 shows a concrete example.

At the time point 44, PARTIES uses 5 actions to have a better

solution, but OSML only uses 1 action/step to achieve OAA.

At the time point 56, PARTIES deprives Img-dnn of cores and

LLC ways, and then allocates them to Xapian, leading to the

RCliff phenomenon, incurring high latency for Img-dnn. We

see clearly that the previous scheduler incurs high scheduling

overheads from Figure 16. Again, Figure 16 shows the

advantages and necessity of using ML in resource scheduling.

D. Disscussions

(1) ML models. In our study, we find 3 parameters – the num.

of cores, LLC ways, and local bandwidth – in Table 3 play

more important role than others in ML models. It is reasonable,

and OSML performs well on scheduling them. (2) RCliff.

OSML can effectively avoid RCliff, and we find that, in the

scenarios with heavily resource contentions, RCliff brings a

relatively lower impact for some applications, but it still

obvious. Moreover, it is an easy job for OSML handle the

microservices that do not have significant RCliff. (3)

Overheads. OSML detects the QoS of microservices for

every second, and once the QoS violation is detected, it will

enable ML models. It takes 0.23 second for receiving results

from models on GPU. Moreover, Figure 15 shows that

OSML’s scheduling actions are only 1/5 of state-of-the-art

scheduler, on average, bringing low scheduling overhead.

VII. RELATED WORK

(1) ML for Systems. Employing ML technologies for system

design and optimizations can be a good idea. The work in [47]

employs DNN to optimize the buffer size Database system.

[35] uses deep reinforcement learning for resource

management in a networking environment. Some efforts in

[18,48] use ML to optimize computer architecture, making C-

-PU or memory controller adaptive to workloads. [8,33]

employs ML for managing interactive on-chip resources.

CALOREE in [32] can learn key control parameters to meet

latency requirements with minimal energy in complex

environments. Our work can be orthogonal with these studies.

In OSML design, we abstract the resource scheduling

problem’s structure and then design ML models to handle

them. (2) ML for OS. It is time to rethink the OS design by

incorporating ML technologies. The efforts in [26,29,50,51]

try to optimize the OS components with learned rules or

propose insight on how to design a new learned OS or OS

components. We think these studies could be worth exploring

by future practitioners. In our work, OSML is designed to

work closely and interact with OS. OSML is an attempt to

marry OS and ML. (3) Resource Partitioning. Partitioning is

a widely used resource scheduling scheme. [9] designs

PARTIES that partitions cache, main memory, I/O, network,

disk bandwidth, etc. to provide QoS for co-located services in

cloud environments. [28,49] propose LLC partitioning for the

multi/manycore platforms. [13] partitions LLC for diverse

clusters of applications. The efforts in [19,22,31,39] show that

cooperatively partition LLC, main memory banks,

channel/bandwidth outperforms the approaches that merely

partition one level memory resource, e.g., sole bank

partitioning. However, the cooperative partitioning policies

need to be carefully designed [27,30,40], and [10,24] shows

the heuristic resource scheduling approach could be

ineffective in many QoS constraint cases. OSML is the first

work that uses Neural Network to handle the cross-layers

resource partitioning problem, providing ideal QoS for co-

located interactive applications in cloud environments. (4)

Microservice. The work in [14,46] studies the implications,

characteristics of microservices for designing/optimizing

cloud servers; [15,45] enhance the performance of systems

comprised of microservices using ML or auto-tuned

approaches. Our design is partially inspired by these studies.

OSML schedules resources using ML technologies, which

could be a cost-effective way in new cloud environments.

VIII. CONCLUSION

We have presented OSML, an online resource scheduling

mechanism for microservices. OSML employs ML in its key

components to preserve QoS for the co-scheduled services.

We evaluate OSML against state-of-the-art mechanism and

show that it performs better in many cases. More importantly,

we advocate the new solution, i.e., leveraging ML to enhance

resource scheduling, could have an immense potential for OS

design. In a world where colocation and sharing are a

fundamental reality, our solution should grow in importance.

We hope our efforts could be helpful to future researchers in

our community.

12

REFERENCES

[1] “Improving real-time performance by utilizing cache allocation

technology,”
https://www.intel.com/content/dam/www/public/us/en/documents/whit

e-papers/cache-allocation-technology-white-paper.pdf, Intel

Corporation, April, 2015

[2] “Intel 64 and IA-32 Architectures Software Developer’s Manual,”
https://software.intel.com/en-us/articles/intel-sdm, Intel

Corporation, October, 2016

[3] “State of the Cloud Report,” http://www.righscale.com/lp/state-of-the-

cloud. Accessed: 2019-01-28.

[4] “How 1s could cost amazon $1.6 billionin sales.”

https://www.fastcompany.com/1825005/how-one-second-could-

costamazon-16-billion-sales

[5] “Microservices workshop: Why, what, and how to get there,”

http://www.slideshare.net/adriancockcroft/microservices-workshop-

craft-conference.

[6] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,

Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,

Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga,

Sherry Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay

Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang

Zheng, “TensorFlow: A System for Large-Scale Machine Learning,” in

OSDI, 2016

[7] Daniel S. Berger, Benjamin Berg, Timothy Zhu, Siddhartha Sen, Mor

Harchol-Balter, “RobinHood: Tail Latency Aware Caching -- Dynamic

Reallocation from Cache-Rich to Cache-Poor,” in OSDI, 2018

[8] Ramazan Bitirgen, Engin Ipek, Jose F. Martinez, “Coordinated

Management of Multiple Interacting Resources in Chip Multiprocessors:

A Machine Learning Approach,” in Micro, 2008

[9] Shuang Chen, Christina Delimitrou, José F. Martínez, “PARTIES: QoS-

Aware Resource Partitioning for Multiple Interactive Services,” in

ASPLOS, 2019

[10] Yi Ding, Nikita Mishra, Henry Hoffmann, “Generative and Multi-phase

Learning for Computer Systems Optimization,” in ISCA, 2019

[11] Jeff Dean, David A. Patterson, Cliff Young, “A New Golden Age in

Computer Architecture: Empowering the Machine-Learning

Revolution,” in IEEE Micro 38 (2): 21-29 (2018)

[12] Christina Delimitrou, Christos Kozyrakis, “Quasar: Resource-Efficient

and QoS-Aware Cluster Management,” in ASPLOS, 2014

[13] Nosayba El-Sayed, Anurag Mukkara, Po-An Tsai, Harshad Kasture,

Xiaosong Ma, Daniel Sanchez, “KPart: A hybrid Cache Partitioning-

Sharing Technique for Commodity Multicores,” in HPCA, 2018

[14] Yu Gan and Christina Delimitrou, “The Architectural Implications of

Cloud Microservices,” in IEEE Computer Architecture Letters, 2018

[15] Yu Gan, Yanqi Zhang, Kelvin Hu, Dailun Cheng, Yuan He, Meghna

Pancholi, Christina Delimitrou, “Leveraging Deep Learning to Improve

Performance Predictability in Cloud Microservices with Seer,” in ACM

SIGOPS Operating Systems Review, 2019

[16] Kurt Hornik, “Approximation Capabilities of Multilayer Feedforward

Networks,” in Neural Networks, 1991

[17] Mark D. Hill, Michael R. Marty, “Amdahl's Law in the Multicore Era,”

in IEEE Computers, 2008

[18] Engin Ipek, Onur Mutlu, José F. Martínez, Rich Caruana, “Self-

Optimizing Memory Controllers: A Reinforcement Learning Approach,”

in ISCA, 2008

[19] Jinsu Park, Seongbeom Park, Woongki Baek, “CoPart: Coordinated

Partitioning of Last-Level Cache and Memory Bandwidth for Fairness-

Aware Workload Consolidation on Commodity Servers,” in EuroSys,

2019

[20] Henry Qin, Qian Li, Jacqueline Speiser, Peter Kraft, and John

Ousterhout, “Arachne: Core-Aware Thread Management,” in OSDI,

2018

[21] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav

Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al

Borchers, Rick Boyle, Pierre-luc Cantin, Clifford Chao, Chris Clark,

Jeremy Coriell, Mike Daley, Matt Dau, Jeffrey Dean, Ben Gelb, Tara

Vazir Ghaemmaghami, Rajendra Gottipati, William Gulland, Robert

Hagmann, C. Richard Ho, Doug Hogberg, John Hu, Robert Hundt, Dan

Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski, Alexander Kaplan,

Harshit Khaitan, Daniel Killebrew, Andy Koch, Naveen Kumar, Steve

Lacy, James Laudon, James Law, Diemthu Le, Chris Leary, Zhuyuan

Liu, Kyle Lucke, Alan Lundin, Gordon MacKean, Adriana Maggiore,

Maire Mahony, Kieran Miller, Rahul Nagarajan, Ravi Narayanaswami,

Ray Ni, Kathy Nix, Thomas Norrie, Mark Omernick, Narayana

Penukonda, Andy Phelps, Jonathan Ross, Matt Ross, Amir Salek, Emad

Samadiani, Chris Severn, Gregory Sizikov, Matthew Snelham, Jed

Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gregory Thorson,

Bo Tian, Horia Toma, Erick Tuttle, Vijay Vasudevan, Richard Walter,

Walter Wang, Eric Wilcox, Doe Hyun Yoon, “In-Datacenter

Performance Analysis of a Tensor Processing Unit,” in ISCA, 2017

[22] Min Kyu Jeong, Doe Hyun Yoon, Dam Sunwoo, Michael Sullivan,

Ikhwan Lee, Mattan Erez,“Balancing DRAM Locality and Parallelism

in Shared Memory CMP Systems,”in HPCA, 2012

[23] Alex Krizhevsky, Ilya Sutskever, Geoffrey Hinton, "ImageNet

Classification with Deep Convolutional Neural Networks," in Advances

in neural information processing systems, 2012

[24] David Lo, Liqun Cheng, Rama Govindaraju, Parthasarathy

Ranganathan, Christos Kozyrakis, "Heracles: Improving Resource

Efficiency at Scale," in ISCA, 2015

[25] Lei Liu, Shengjie Yang, Lu Peng, Xinyu Li, “Hierarchical Hybrid

Memory Management in OS for Tiered Memory Systems,” in IEEE

Trans. on Parallel and Distributed Systems, 2019

[26] Yanjing Li, Onur Mutlu, Subhasish Mitra, “Operating System

Scheduling for Efficient Online Self-Test in Robust Systems,” in

ICCAD, 2009

[27] Seung-Hwan Lim, Jae-Seok Huh, Yougjae Kim, Galen M. Shipman,

Chita R. Das, “D-Factor: A Quantitative Model of Application Slow-

Down in Multi-Resource Shared Systems” in Sigmetrics, 2012

[28] Jiang Lin, Qingda Lu, Xiaoning Ding, Zhao Zhang, Xiaodong Zhang,
P. Sadayappan, “Gaining insights into mlticore cache partitioning:
bridging the gap between simulation and real systems,” in HPCA, 2008

[29] Lei Liu, Yong Li, Chen Ding, Hao Yang, Chengyong Wu, “Rethinking

Memory Management in Modern Operating System: Horizontal,

Vertical or Random?” in IEEE Trans. on Computers, 2016

[30] Fang Liu, Yan Solihin, “Studying the Impact of Hardware Prefetching

and Bandwidth Partitioning in Chip-Multiprocessors,” in Sigmetrics,

2011

[31] Lei Liu, Zehan Cui, Mingjie Xing, Chengyong Wu, “A Software

Memory Partition Approach for Eliminating Bank-level Interference in

Multicore Systems,” in PACT, 2012

[32] Nikita Mishra, Connor Imes, John D. Lafferty, Henry Hoffmann,

“CALOREE: Learning Control for Predictable Latency and Low

Energy,” in ASPLOS, 2018

[33] Jose F. Martinez, Egin Ipek, “Dynamic multicore resource management:

A machine learning approach,” in IEEE Micro 29 (5):8-17 (2009)

[34] Nikita Mishra, Harper Zhang, John Lafferty, Henry Hoffmann, “A

probabilistic Graphical Model-based Approach for Minimizing Energy

Under Performance Constraints,” in ASPLOS, 2015

[35] Hongzi Mao, Mohammad Alizadeh, Ishai Menache, Srikanth Kandula,

“Resource Management with Deep Reinforcement Learning,” in

HotNet-XV, 2016

https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/cache-allocation-technology-white-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/cache-allocation-technology-white-paper.pdf
https://software.intel.com/en-us/articles/intel-sdm
http://www.righscale.com/lp/state-of-the-cloud
http://www.righscale.com/lp/state-of-the-cloud
http://www.slideshare.net/adriancockcroft/microservices-workshop-craft-conference
http://www.slideshare.net/adriancockcroft/microservices-workshop-craft-conference
https://sc2682cornell.github.io/authors/shuang-chen/
https://sc2682cornell.github.io/authors/christina-delimitrou/
https://sc2682cornell.github.io/authors/jose-f.-martinez/
https://dblp.uni-trier.de/pers/hd/d/Dean:Jeff
https://dblp.uni-trier.de/pers/hd/p/Patterson:David_A=
https://dblp.uni-trier.de/db/journals/micro/micro38.html#DeanPY18
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=10208
http://dx.doi.org/10.1109/MC.2008.209
https://dblp.uni-trier.de/pers/hd/i/Ipek:Engin
https://dblp.uni-trier.de/pers/hd/m/Mutlu:Onur
https://dblp.uni-trier.de/pers/hd/m/Mart=iacute=nez:Jos=eacute=_F=
https://dblp.uni-trier.de/pers/hd/c/Caruana:Rich
https://www.usenix.org/conference/osdi18/presentation/qin
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=71

13

[36] Yashwant Marathe, Nagendra Gulur, Jee Ho Ryoo, Shuang Song, and

Lizy K. John, “CSALT: Context Switch Aware Large TLB,” in Micro,

2017

[37] Jason Mars, Lingjia Tang, Mary Lou Soffa, “Directly Characterizing

Cross Core Interference Through Contention Synthesis,” in HiPEAC,

2011

[38] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu,

Joel Veness, Marc G. Bellemare, Alex Graves, Martin Riedmiller,

Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie,

Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran,

Daan Wierstra, Shane Legg, Demis Hassabis, “Human-level control

through deep reinforcement learning,” in Nature 518 (7540): 529-533,

2015

[39] Sai Prashanth Muralidhara, Lavanya Subramanian, Onur Mutlu,

Mahmut Kandemir, Thomas Moscibroda, “Reducing Memory

Interference in Multicore Systems via Application-Aware Memory

Channel Partitioning,” in Micro, 2011

[40] Jason Mars, Lingjia Tang, Robert Hundt, Kevin Skadron, Mary Lou

Soffa, “Bubble-Up: Increasing Utilization in Modern Warehouse Scale

Computers via Sensible Co-locations,” in Micro, 2011

[41] Prateek Sharma, Ahmed Ali-Eldin, Prashant Shenoy, “Resource

Deflation: A New Approach For Transient Resource Reclamation,” in

EuroSys, 2019

[42] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scoott

Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke,

Andrew Rabinovich, “Going deeper with convolutions,” in CVPR, 2015

[43] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre,

George van den Driessche, Julian Schrittwieser, Ioannis Antonoglou,

Veda Panneershelvam, Marc Lanctot, Sander Dieleman, Dominik

Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy

Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, Demis

Hassabis, “Mastering the game of Go with deep neural networks and

tree search,” in Nature, 529 (7587), 2016

[44] Yizhou Shan, Yutong Huang, Yilun Chen, Yiying Zhang, “LegoOS: A

Disseminated, Distributed OS for Hardware Resource Disaggregation,”

in OSDI, 2018

[45] Akshitha Sriraman, Thomas F. Wenisch, “µTune: Auto-Tuned

Threading for OLDI Microservices”, in OSDI, 2018

[46] Akshitha Sriraman, Abhishek Dhanotia, Thomas F. Wenisch, “SoftSKU:

Optimizing Server Architectures for Microservice Diversity @Scale,”

in ISCA, 2019

[47] Jian Tan, Tieying Zhang, Feifei Li, Jie Chen, Qixing Zheng, Ping Zhang,

Honglin Qiao, Yue Shi, Wei Cao, Rui Zhang, “iBTune : Individualized

Buffer Tuning for Large-scale Cloud Databases,” in VLDB, 2019

[48] Stephen J. Tarsa, Rangeen Basu Roy Chowdhury, Julien Sebot,

Gautham Chinya, Jayesh Gaur, Karthik Sankaranarayanan, Chit-Kwan

Lin, Robert Chappell, Ronak Singhal, Hong Wang, “Post-Silicon CPU

Adaptations Made Practical Using Machine Learning,” in ISCA, 2019

[49] Xiaodong Wang, Shuang Chen, Jeff Setter, Jose F. Martínez, “SWAP:

Effective Fine-Grain Management of Shared Last-Level Caches with

Minimum Hardware Support,” in HPCA, 2017

[50] Zi Yan, Daniel Lustig, David Nellans, and Abhishek Bhattacharjee,

“Nimble Page Management for Tiered Memory Systems”, in ASPLOS,

2019

[51] Yiying Zhang, Yutong Huang, “Learned Operating Systems”, in ACM

SIGOPS Operating Systems Review, 2019

[52] Zhijia Zhao, Bo Wu, Xipeng Shen, “Challenging the "Embarrassingly

Sequential": Parallelizing Finite State Machine-based Computations

through Principled Speculation,” in ASPLOS, 2014

https://cseweb.ucsd.edu/~yiying/LegoOS-OSDI18.pdf
https://cseweb.ucsd.edu/~yiying/LegoOS-OSDI18.pdf
https://dl.acm.org/authorize?N668226
https://dl.acm.org/authorize?N668226
https://dl.acm.org/authorize?N668226

