Monitoring Memory Behaviors and Mitigating
NUMA Drawbacks on Tiered NVM Systems

Shengjie Yang!?, Xinyu Li'2, Xinglei Dou'2, Xiaoli Gong?, Hao Liu*, Li Chen?,
Lei Liu*!?

1Sys-Inventor Lab, 2SKLCA, ICT, CAS; ®Nankai; *“AMS, PLA & Tsinghua

Abstract. Non-Volatile Memory with byte-addressability invites a new
paradigm to access persistent data directly. However, this paradigm brings
new challenges to the Non-Uniform Memory Access (NUMA) architec-
ture. Since data accesses cross NUMA node can incur significant per-
formance loss, and, traditionally, OS moves data to the NUMA node
where the process accessing it locates to reduce the access latency. How-
ever, we find challenges when migrating data on NVM, which motivates
us to migrate the process instead. We propose SysMon-N, an OS-level
sampling module, to obtain access information about NVM in low over-
head. Furthermore, we propose N-Policy to utilize the data collected by
SysMon-N to guide process migration. We evaluate SysMon-N and N-
Policy on off-the-shelf NVM devices. The experimental results show that
they provide 5.9% to 3.62x bandwidth improvement in the case where
cross-node memory accesses happen.

Keywords: DRAM-NVM, NUMA, OS, Migration, Scheduling

1 Introduction

Non-Volatile Memory (NVM) attaches to the memory bus promises DRAM-like
latency, byte-addressability, and data persistence. NVM will become common-
place soon. Previous studies (e.g., [4]), focusing on kernel-bypassing, redesign the
file system dedicated to NVM for reducing software overheads stemmed from ker-
nel involvement. A critical feature of this type of file system is the “direct access”
(i.e., DAX) style interface through the mmap() system call, through which the
user process can map the NVM-based file into its address space and access the
file content directly by load/store instructions from user space [1]. Different from
the on-demand paging data access, NVM possesses both byte-addressability and
persistency, which allows user processes to access the persistent data directly.
However, NVM is usually mounted on a specific node and forms a tiered/hybrid
memory system with DRAM on NUMA servers, leading to the risk of cross-node
accesses (i.e., remote access). Remote access may cause dramatic performance
degradation, and there are many studies to provide shreds of evidence for this.

In terms of the performance loss due to the remote accessing on DRAM,
previous work moves data from remote NUMA node to the local node where
the user process is running on. However, we find some challenges in the previous

This project is supported by the National Key Research and Development Program of China
under Grant No.2017YFB1001602 and the NSFC under grants No.61502452, 61902206, 61702286.
This work originates from L. Liu’s series of studies in ISCA,PACT, TPDS,TC,etc.[5-12] on memory
systems conducted in Sys-Inventor Lab. More details refer to Sys-Inventor Lab - https://liulei-
sys-inventor.github.io. *Corresponding author (PI):1ei.liu@zoho.com;1liulei2010@ict.ac.cn



2 S. Yang et al.

studies about the NVM-based systems. (1) There is no “struct page” for persis-
tent data in NVM that managed by the DAX-aware file systems [1], leading to
the complexity of page migration on the system using both DRAM and NVM.
(2) Since the data blocks to be migrated are persistent, the process of page mi-
gration needs to be guaranteed as atomic and consistent using a transaction-like
mechanism, which will introduce extra overheads on the critical path. (3) The
persistent data usually has a much larger size than the volatile data, and fre-
quent migrating of them will produce significant overheads [13]. These challenges
motivate us to seek a new design.

In this work, we propose an new mechanism. Instead of moving persistent
data, we migrate the process to the original node where the persistent data lo-
cates. In order to achieve our goal, we propose SysMon-N and N-Policy. SysMon-
N is an OS-level memory behavior sampling module that can obtain the NVM
access "hotness” (i.e., access times within a sampling interval) and the access
mode (i.e., remote or local) for a user process with low overheads. N-Policy is
a process migration policy designed for the user processes which use MVM. For
instance, N-Policy reduces the expensive remote accesses to NVM by migrating
the process to the node that is close to NVM. The experimental results show
that SysMon-N and N-Policy can increase the bandwidth of read-intensive ap-
plications by 5.9% and the bandwidth of write-intensive applications by 2.71x
to 3.62x when the incorrect core is allocated and remote access occurs.

2 The Art of Our Design
2.1 SysMon-N - Sampling Memory Systems with NVM

To tackle the problems mentioned above, we first design a practical OS-level
memory behavior sampling module to capture the NVM access information.
Our prior efforts [5,6,8] propose SysMon as an OS-level memory behavior mon-
itoring module. SysMon periodically checks the access bits in Page Table En-
tries (PTEs) to obtain the page hotness. However, merely checking PTEs can
not distinguish whether the page is located in NVM or DRAM. So, we design
SysMon-N, based on SysMon [5], to provide the physical address information
of the data, it achieves two objectives. (1) Sampling pages in NVM to collect
the page hotness information while avoiding sampling pages in DRAM to nar-
row down the sampling space; (2) Checking whether remote access occurs and
collecting related data access information.

As a preprocessing step, SysMon-N collects the NUMA topology information
of the platform by scanning ACPI static resource affinity table (SRAT), where
the topology information of all processors and memories are stored. By checking
the ACPI_SRAT_MEM_NON_VOLATILE flag of the SRAT entries, SysMon-N can get
the range of physical address of all NVM devices. Usually, the physical locations
of all pages in a Virtual Memory Aera (VMA) are the same. For a specific VMA,
SysMon-N gets the physical address of VMA’s start page and checks whether
it falls in the physical address range of an NVM device. If so, it means that all
pages of the VMA are on one specific NVM device, and it is necessary to traverse
the VMA’s memory address. Otherwise, the VMA is not in NVM and can be



Monitoring and Mitigating NUMA Drawbacks on Tiered NVM Systems 3

Sysmon-N Process OS - Migration
] = I'Node 1
if - _uuu!u_z NodeO—;m
g C = " = E i) =
8 = = —bﬂj E B
o = = ~Olo Node 1 | L
g F . -2[8 8o
o TITrrTnIT = n
Phase 1: Monitoring N iev-
page’s utilization in NVM Phase 2: Monitoring for local/remote NVM access Se'i‘zept:(:lt?n%hg
™ Hot Page [l Code Page — Access Coverage of process
ouTPuT © CPU’ Node Id @ NVM’ Node Id migration

Fig. 1: Workflow of SysMon-N

skipped to narrow down the sampling space.

Figure 1 shows the workflow of SysMon-N. It has two phases. In phase 1,
SysMon-N checks each page’s access_bit within the monitored process to find
the hot pages in NVM and their corresponding physical address area. Besides,
considering the massive pressure that NVM’s large capacity puts on the limited
number of TLBs, it is natural for OS to use the huge page on NVM. The detection
of the huge page utilization on NVM are basically the same with the 4KiB-based
pages; SysMon-N uses the PMD entries to complete the address translation since
the OS omits the last level PTE for 2MiB huge pages.

In phase 2, by comparing the node id of CPU where the process running on
and that of the NVM node where the data are stored, SysMon-N can determine
whether remote accesses occur or not. SysMon-N obtains the set of CPUs on
which it’s eligible to run by checking process’s CPU affinity mask, and then calls
the cpu_to_node() kernel function to check the node corresponding to the CPU.
Finally, SysMon-N compared the CPU node id with NVM node id for the result:
if the two node ids are the same, the process has accessed the page on remote
NVM; otherwise, the process only touches the local NVM.

Finally, after sampling, SysMon-N has the number of hot and cold pages and
related physical address ranges, and provides the information to N-Policy for
making a decision.

2.2 N-Policy - For NVM

N-Policy leverages the formation provided by SysMon-N, and guides process
migration accordingly. The key component of N-Policy is a conditional migration

Eliminate Fully Remote Access Migrate under Access Coverage H Migrate as per Hot Pages Number

Fig. 2: Conditional Migration Model of N-Policy



4 S. Yang et al.

model which is depicted in figure 2. It has two principles. (1) Eliminating remote
access whenever possible; (2) Trying to avoid unnecessary migration. The inputs
of N-Policy include: (1) the number of hot/cold pages on per node; (2) access
coverage for each node; (3) CPU’s node id on which the process locates; (4) node
id for the used NVM.

After each SysMon-N sampling epoch is completed, the N-Policy immediately
decides whether to migrate according to three data access conditions as shown
in figure 2. The first case is when completely remote access occurs (no data are
accessed from local NUMA node), the migration action is triggered to migrate
the process to the same node of data. This situation is determined by judging
whether there is intersection between the set of the node id of CPU which the
process are allowed to run on and that of NVM where accessed data locates.
N-Policy makes process migration in this case, easing the overhead of cross-node
access by placing the process on the same node as the NVM being used.

If the two set of node ids have intersections, N-Policy compare access cover-
age on different nodes to further decide whether to execute migration. Access
coverage symbolizes the amount of data accessed by the process on each NUMA
node. If the access coverage of different nodes is unbalanced (i.e., in Figure 2,
N-Policy considers access coverage on remote NUMA node greater than 80% as
unbalanced access). N-Policy will select the least utilized CPU on the NUMA
node with the broadest access coverage as the target of process migration.

Finally, information about page hotness is also taken into account in N-
Policy. Hot pages indicate frequently accessed pages and the data on them is
often more important than other pages (may not be right in some cases), and
should be accessed closer for reducing latency. To ensure fast access to hot pages,
N-Policy compares NUMA node’s hotness and migrate the process to the node
with the more hot pages.

To avoid significant overheads caused by repeated and meaningless migra-
tions, we let N-Policy receives messages from SysMon-N for every 10 seconds.
N-Policy uses the function sched_getaffinity() of the Linux kernel to bind a pro-
cess to the corresponding CPU nodes for migration.

3 Effectiveness of N-Policy on Bandwidth and Latency

Our experimental platform is a server with dual CPU sockets of Intel Xeon Gold
6240M CPU (each has 36 cores); it has 512GB Intel® Optane” DC persistent
memory on per socket, i.e., 1024GB NVM on our platform. We configure the
namespace [3] for the Optane PMM, which represents a certain amount of NVM
that can be formatted as logical blocks, and then deploy the ext4-DAX file system
on it to support direct data access. We don’t consider I/O in experiments [14].

We use the Flexible I/O Tester (Fio) [2] with 1ibpmem engine to evaluate
the effectiveness of N-policy collaborated SysMon-N. We adjust the minimum
read/write block size of I/O operations to perform reads and writes to NVM in
different situations, and record bandwidth under different block sizes with and
without N-Policy enabled, respectively. To verify the effectiveness of N-Policy,
all data accesses of Fio are set as remote access.



Monitoring and Mitigating NUMA Drawbacks on Tiered NVM Systems 5

2600 - 2500 4

N
S
S
S

2400

—— 4KiB (Unmanaged)
~ 2MiB (Unmanaged)

BandWidth (MiB/s)
BandWidth (MiB/s)

—— 4KiB (N-Policy)
2200 1500 2MiB (N-Policy)
— 4KiB (Unmanaged)
~—— 2MiB (Unmanaged)
2000 4 —— 4KiB (N-Policy) 1000 -
= 2MiB (N-Policy) - ) B ~ o
0 2 4 6 50 100 0 2 4 60 80 100
Time (seconds) Time (seconds)
(a) 100% read (b) 100% write

Fig. 3: Unmanaged vs. Use N-Policy to guide migration

Figure 3-(a) presents the 100% read case. As a baseline, we launch Fio [2]
in two cases with a single data access size of 4KiB and 2MiB, respectively. The
corresponding memory bandwidth of the two cases is stable with an average of
2273 MiB/s and 2482 MiB/s, respectively. When N-Policy is enabled, it conducts
process migration to eliminate the remote access which occurs at the timing
around 10s. The bandwidth changes accordingly as the process is migrated to
the optimal node. N-Policy can improve the bandwidth by 6.94% and 5.90% for
4KiB and 2MiB block size, respectively. Figure 3-(b) shows the 100% write case.
N-Policy achieves better results in this case. By eliminating the remote access
with process migration, the bandwidth of Fio can increase by 2.71x and 3.26x
in the case of 4KiB and 2MiB block sizes, respectively. This is because reading
and writing bandwidth on NVM are not symmetric and NVM is more sensitive
to write operations.

References

1. “Direct Access for files”, https://www.kernel.org/doc/Documentation/

filesystems/dax.txt.

“Fio - Flexible I/O tester”, https://fio.readthedocs.io/en/latest/.

“Persistent Memory Concepts”, https://docs.pmem.io/ndctl-user-guide/

concepts.

D.S.Rao, et al, “System software for persistent memory”, in EuroSys, 2014.

M.Xie, et al, “Sysmon: Monitoring memory behaviorsvia OS approach”, in APPT,

2017.

L.Liu, et al, “Hierarchical Hybrid Memory Management in OS for Tiered Memory

Systems”, in IEEE TPDS, 2019.

XYLi, et al, “Thinking about A New Mechanism for Huge Page Management”, in

APSys, 2019.

L.Liu, et al, “Going Vertical in Memory Management: Handling Multiplicity by

Multi-policy”, in ISCA, 2014. (revised version)

L.Liu, et al, “BPM/BPM+: Software-based Dynamic Memory Partitioning Mech-

anisms for Mitigating DRAM Bank-/channel-level Interferences in Multicore Sys-

tems”, in ACM TACO, 2014. (revised version)

10. L.Liu, et al, “A Software Memory Partition Approach for Eliminating Bank-level
Interference in Multicore Systems”, in PACT, 2012. (revised version)

11. L.Liu, et al, “Rethinking Memory Management in Modern Operating System: Hor-
izontal, Vertical or Random?”, in IEEE Trans. Computers (TC), 2016.

12. L.Liu, et al, “Memos: A Full Hierarchy Hybrid Memory Management Framework”,
in ICCD, 2016.

13. S.Chen, et al, “Efficient GPU NVRAM persistence with helper warps”, in DAC,
2019.

14. F.Lv, et al, “Dynamic I/O-Aware Scheduling for Batch-Mode Applications on Chip
Multiprocessor Systems of Cluster Platforms”, in JCST, 2014.

© ® N ouk W


https://www.kernel.org/doc/Documentation/filesystems/dax.txt
https://www.kernel.org/doc/Documentation/filesystems/dax.txt
https://fio.readthedocs.io/en/latest/
https://docs.pmem.io/ndctl-user-guide/concepts
https://docs.pmem.io/ndctl-user-guide/concepts

	Monitoring Memory Behaviors and Mitigating NUMA Drawbacks on Tiered NVM Systems-12pt

