
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 1

Hierarchical Hybrid Memory Management in
OS for Tiered Memory Systems

Lei Liu, Shengjie Yang, Lu Peng, and Xinyu Li

Abstract—The emerging hybrid DRAM-NVM architecture is challenging the existing memory management mechanism at the

level of the architecture and operating system. In this paper, we introduce Memos, a memory management framework which

can hierarchically schedule memory resources over the entire memory hierarchy including cache, channels, and main memory

comprising DRAM and NVM simultaneously. Powered by our newly designed kernel-level monitoring module that samples the

memory patterns by combining TLB monitoring with page walks, and page migration engine, Memos can dynamically optimize

the data placement in the memory hierarchy in response to the memory access pattern, current resource utilization, and

memory medium features. Our experimental results show that Memos can achieve high memory utilization, improving system

throughput by around 20.0%; reduce the memory energy consumption by up to 82.5%; and improve the NVM lifetime by up to

34X.

Index Terms— Memory, DRAM, NVM, Operating System, Scheduling

—————————— ◆ ——————————

1 INTRODUCTION

n the era of big data and cloud computing, applications
have rapidly increasing memory footprints, energy con-

sumption, and demand for throughput. To satisfy these
requirements, it is critical to increase the memory capaci-
ty, reduce the memory access latency, and improve
memory energy efficiency. Emerging Non-Volatile
Memory (NVM) technologies (e.g., Intel/Micron’s 3D
XPoint promises 6TB of storage in a dual-socket server
[22,23]) provide higher density and lower energy costs
but suffer from relatively long write latency compared to
DRAM. Thus, future systems will likely use hybrid
DRAM-NVM systems [25,32,34,46], i.e., tiered memory
systems, to take advantage of both the fast access speed of
DRAM and the ultra-low idle-power, high density, as
well as the non-volatility offered by NVM.

Conventionally, there are two different ways of organ-
izing hybrid DRAM-NVM (Fast-Slow) main memory sys-
tems. The first option is to place different memories “ver-
tically”, i.e., using the faster DRAM as a cache (buffer) of
the NVM. In this scheme, data movement between NVM
and DRAM is controlled by dedicated hardware logic,
which is transparent to Operating System (OS) and user
applications [34,63,65]. Alternatively, DRAM and NVM
can reside “horizontally” at the same level in the memory
hierarchy [34,63,71], where software manages data
placement and page migration. Compared to the first ap-
proach, the horizontal architecture presents more oppor-
tunities and challenges to OS designers [57,62,81,83].

The challenges in designing OS for a hybrid memory
system lie in identifying performance-critical data that
should be placed in the fast memory, and maximizing the
utilization of the fast memory (DRAM), which is with
limited capacity [44] and low utilization (as low as 31% in
Google Data Centers [45]). Many studies have discussed
this topic. In contrast, our work is based on the following
key insights:
(1) While the previous approaches [53,87] can identify the
memory access patterns, e.g., hot/cold memory pag-
es/regions, for desktop-level applications by PTE (Page
Table Entry) sampling, they are ineffective in the envi-
ronments with the workloads such as Redis and Mem-
cached, which have large memory footprints and diverse
patterns of memory access (e.g., the hot regions with di-
verse write/read patterns may be randomly distributed in
the large address space). Scanning the entire address
space periodically for them to figure out the memory pat-
terns can incur significant overheads. And, doing in this
way is often insensitive to the memory pattern changes.
Thus, it is necessary to combine event sampling and page-
table walks to achieve both high accuracy and low over-
head for monitoring the workloads with large and diverse
memory footprints.
(2) Although NVM has a larger capacity compared to
DRAM, it is hard to be fully exploited when added into
the existing memory hierarchy. In order to maximize
NVM/DRAM utilization, it is essential to consider cache
activities at multiple hierarchical levels when placing
memory pages; existing memory-hierarchy-blind ap-
proaches are sub-optimal [51,52].
(3) Page migration impacts the overall system perfor-
mance, especially for the cloud computing systems with
hybrid memories, where a large amount of data are fre-
quently moved across memories due to memory pattern
changes. We find the core reasons for the high overhead

xxxx-xxxx/0x/$xx.00 © 200x IEEE Published by the IEEE Computer Society

I

————————————————

Lei Liu (corresponding author), Shengjie Yang and Xinyu Li are within the
Sys-Inventor Lab, SKLCA, ICT, CAS. Address: 0612J, No.6 Kexueyuan
South Road Zhongguancun, Haidian District Beijing, China.
Email: lei.liu@zoho.com; {liulei2010, yangshengjie}@ict.ac.cn

Lu Peng is within the Division of Electrical & Computer Engineering Lou-
isiana State University Baton Rouge, LA 70803 USA.
Email: lpeng@lsu.edu

mailto:lei.liu@zoho.com
mailto:lei.liu@zoho.com
mailto:yangshengjie%7d@ict.ac.cn
mailto:yangshengjie%7d@ict.ac.cn

2 IEEE TRANSACTION ON PARALLEL AND DISTRIBUTED SYSTEMS

are multi-fold: a) to ensure the consistency for migrated
pages, the OS locks them during the migration; as a re-
sult, these pages cannot be accessed during this period,
hurting performance; b) updating PTEs/mappings for the
migrated pages can result in expensive context switches
and TLB shootdown [28]; and c) current methods often
use improper migration mechanisms for pages with dif-
ferent memory patterns. For example, an expensive CPU
memory copy is inappropriate for cold data evicted from
fast memory (DRAM), which is unlikely to be reused in
the near future. Hence, we believe the data migration
mechanism between DRAM and NVM should combine
DMA and CPU-based approaches for the best efficiency
depending on the memory access pattern, and this mech-
anism should also avoid the unnecessary lock usage and
unnecessary migrations.

With these considerations, we introduce Memos, a
memory management framework in the OS for horizon-
tally integrated DRAM and NVM (i.e., Multi-Channel
Horizontal Architecture (MCHA), where memory chan-
nels connect different types of memory). The critical de-
sign ideas and contributions of this paper are listed as
follows:
(1) We design the first full hierarchy memory manage-
ment framework in the OS, to hierarchically schedule
cache, channels, and DRAM/NVM banks simultaneously.
Our framework not only efficiently discerns and migrates
hot pages to fast memory (DRAM) but also schedules the
hotness according to the cache and bank associated map-
ping scheme, leaving the NVM cool while maximizing the
utilization of the DRAM as well as the entire memory
hierarchy. (Sec.4)
(2) We propose a Hybrid Memory Monitoring mecha-
nism (HyMM), an OS kernel-level online memory-
profiling module. HyMM has three new features: 1) by
extensively studying several memory traces, we find the
most effective history window size for predicting the fu-
ture page-level memory access patterns. Leveraging this
knowledge, HyMM can effectively predict the future
memory patterns. 2) We discover that, within a specific
address range (i.e., a sub-memory region in the address
space), memory pages exhibit similar write/read memory
patterns. Thus, HyMM can use only one page as a sample
representing the corresponding sub-region, and thus sub-
stantially reduce the sampling overhead. 3) HyMM is the
first approach to combine TLB miss rate sampling along
with access/dirty_bit sampling while adapting to different
types of memory. In practice, HyMM obtains the page
hotness, write/read patterns and the stream-like uses for
applications with large memory footprint with lower
overhead. (Sec.3)
(3) We devise a cost-effective hybrid data migration en-
gine, which combines DMA and CPU-based page migra-
tion approaches, and allows for dynamically switching to
the most appropriate mode. Specifically, we optimize the
DMA with lock-less migration, more efficient memory
page migration, and by saving CPU time for migration.
(Sec.5)
(4) We design a two-tiered Buddy System in the OS ker-
nel to support Memos allocating a specific page that cor-

responds to any cache slab, channel, DRAM/NVM banks
in constant time. By modifying the Buddy System, DMA
engine, and performance-monitoring module, we imple-
ment Memos in the Linux kernel. Moreover, we design an
emulation platform for hybrid DRAM-NVM on a real
machine with all DRAM DIMMs by using the channel-
partitioning approach. (Sec.5)

We test Memos by employing Memcached [4], Redis
[9], Aerospike [14], MySQLslap [16], and the benchmarks
in SPECCPU 2006 [6]. The experimental results show that,
on average, Memos on MCHA can improve memory uti-
lization by 27.4~69.9%, and improve throughput by
around 20.0% on average compared to previous ap-
proaches. Moreover, Memos can reduce memory energy
consumption by up to 82.5%, and greatly improve the
NVM lifetime.

2 BACKGROUND AND CHALLENGES

2.1 NVM is coming!

Driven by the growing demands for closing the gap be-
tween CPU and memory/storage, several NVM technolo-
gies emerge as DRAM alternatives (e.g., Phase Change
based RAM [69,72,65]). These technologies offer the po-
tential of building a low-cost hybrid main memory sys-
tem that has a larger capacity, lower power consumption
and operates at near-DRAM speed. Although these NVM
technologies provide unprecedented options and
tradeoffs, they do not aim to completely replace DRAM in
the near future due to its longer write operation latency,
higher dynamic energy consumption and even limited
endurance. For example, PCM is expected to have 2X
higher read latency, up to 5X write latency and 5X~10X
lower bandwidth than DRAM [44,49,65,68,71]. Now, it is
common wisdom to integrate NVM with DRAM to form
a hybrid/tiered memory system (DRAM-NVM) to miti-
gate NVM’s downsides while leveraging its low leakage
and high-density benefits [34,65,78,83]. Yet, previous
work still has room for improvement from the angle of
OS. To achieve a desirable performance on hybrid
memory systems, it would be ideal that the memory
management mechanism in OS kernel could be aware of
architecture features, memory characteristics and applica-
tions’ memory access behaviors, and then guide and op-
timize the data mapping across entire memory hierarchy.

2.2 Data Replacement at Memory Hierarchy

2.2.1 Memory Bank Utilization

The main memory bank system is often the bottleneck of
the overall throughput [65]. To improve bank-level paral-
lelism, while conventional approaches use physical ad-
dress interleaving [52,53] or an XOR scheme [84] to dis-
tribute physical pages across different banks as evenly as
possible, they fail to consider the online memory behav-
iors. As a result, the hot (active) pages, which receive
more memory accesses and have a higher impact on per-
formance at runtime, are often distributed unevenly
across banks. We evaluate the number of hot pages
mapped to each bank, and compare the hot pages number

LEI LIU ET AL.: HIERARCHICAL HYBRID MEMORY MANAGEMENT IN OPERATING SYSTEM 3

Fig.1. Cache and Memory bank associated address mapping.

of every bank with that of the coldest bank (i.e., the one
with the least hot pages), to represent the hot page map-
ping imbalance across banks1. On average, for applica-
tions in SPECCPU 2006, the bank imbalance is 28.2%.
GemsFDTD, as an example, exhibits a high bank imbal-
ance, up to 52.5%, indicating some banks have significant-
ly more hot pages than others. Things got even worse in
some cloud cases. For example, we test Memcached and
show its average bank imbalance is 66.0% at runtime. Our
views indicate there are hot banks that suffer severe bank
conflicts, harming the row-buffer locality, and we believe
this brings significant performance loss in the context of
long-running cloud computing environments.

Using NVM (e.g., PCM [44]), the bank imbalance can
lead to more severe performance loss than on DRAM, as
each bank conflict will bring additional cost than on
DRAM, especially for cases with lots of write operations
[44,65,69]. By rebalancing bank accesses via data migra-
tion, underutilized memory banks can share the respon-
sibilities of these “hot” ones, and therefore the bank-level
interferences can be greatly reduced. Reducing one con-
flict on an NVM bank can has an up to ~10X greater im-
pact on performance than reducing the same conflict on
DRAM. Moreover, as NVM system often has more
memory banks than DRAM system, rebalancing NVM
bank accesses can help to distribute these memory access-
es across more banks, improving the overall bank-level
parallelism and bandwidth.

2.2.2 Cache and Bank Associated Data Mapping

Bank-level balancing alone is not sufficient; in many cas-
es, although memory accesses are nearly balanced across
banks, the cache utilization is still very low. We further
study the cache-bank associated address mapping in
modern architecture [52,53,65] and find that there are
some overlapped bits that index both of the row address
in banks and the cache sets. Thus, “blindly” balancing
bank utilization without taking into account the data
block’s corresponding cache address (i.e., row address in
a specific memory bank) will lead to cache conflicts. We
show a typical example in Fig.1. Suppose there are two
groups of pages (part of the row bits are 0010) residing in
two banks: Bank 0 and Bank 1. Their data blocks will be
mapped into the same cache set, denoted as 0010, which
may cause cache conflicts. If we map a group of pages fr-
om one bank into a different row, denoted as 1011 in
Bank1, the cache conflicts will be eliminated, while still

1 The memory system is with 64 128MB DRAM banks. And, the memory

controller is with the widely used page-level interleaving scheme [51,65].
We have the similar stories on platforms used i7/i3/Xeon E5 series CPU
with the XOR (Sandy/Ivy Bridge) and page-interleaving scheme.

maintaining bank balance.
This motivates us, to pursuit higher memory utiliza-

tion, it is essential to consider cache activities hierarchical-
ly in tandem with bank allocation and mapping. For
NVM, this consideration is especially meaningful, as
cache misses to NVM have a higher cost than those for
read. Therefore, (1) we should try to reduce the number
of memory accesses that go to NVM by reducing the
cache conflicts; (2) even on a specific NVM bank, we
should map data blocks onto carefully selected rows to
avoid cache conflicts, as some of the row bits also index
the cache sets.

2.2.3 Memory Channel Effects

In a system using hybrid DRAM-NVM (e.g., MCHA),
channel scheduling is crucial, as multiple channels con-
nect different types of memory and provide different
bandwidths. Mapping data that performs better on ap-
propriate memory types will benefit the overall system
performance. For example, if stream-like pages are
mapped on an NVM channel, they will definitely con-
sume the limited NVM bandwidth, leading to poor over-
all bandwidth utilization and performance. Since the limi-
tation is the available bandwidth (NVM’s bandwidth is
naturally lower than DRAM), we should have a new
bandwidth scheduling policy for hybrid memory system.
Furthermore, due to the longer latency and endurance for
write operations on NVM, mapping data that is frequent-
ly rewritten into an NVM channel is not a good choice.

3 HyMM: Monitoring Memory Accesses Pat-
terns on Hybrid Memory System

The primary purpose of our design is to keep the hot data
especially for those with write-intensive access patterns
within DRAM. The major challenges are identifying them
with a low overhead, and then moving hot data between
memories. This section highlights our design, i.e., HyMM,
which is used for identifying the memory access patterns
for workloads with high memory footprints.

3.1 Overview of HyMM

Previous studies [53,54,87] clear and check (i.e., sampling)
the page access_bit in a PTE during continuous sampling
passes to determine page hotness. HyMM (Hybrid
Memory Monitor) employs this approach. Furthermore,
to capture write and read patterns, HyMM monitors the
dirty_bit (also in PTE) to capture page-level write/read
behaviors. For a hot page, a dirty_bit of 0 indicates the
page is being used for reading and 1 indicates that this
page has been modified. HyMM monitors not just the
access type but also the location of the access pages. By
examining the values of the bank index bits in PFN (Page
Frame No.) [51,52] and counting the hot pages assigned to
each memory bank, HyMM can obtain the bank balance
information. We carefully designed the core data struc-
ture for HyMM and use a page shadow array (each ele-
ment is a raw byte) and bit manipulation to track the
memory access patterns. For applications with a relatively
small memory footprint (e.g., benchmarks in SPECCPU

4 IEEE TRANSACTION ON PARALLEL AND DISTRIBUTED SYSTEMS

Fig.2. The number of TLB miss in two cloud applications’ relative
virtual address space with a snapshot. Hot regions are those with
relative more TLB misses.

2006 that use below 1GB memory), sampling all pages in
their memory space by monitoring the access_bit to dis-
cern the page-level memory patterns is practical
[22,53,87]. However, for cloud applications, workloads
often have a much larger memory footprint, thus sam-
pling the entire memory address space to obtain the
memory features (e.g., access frequency, hotness ranking)
is not quite cost-effective and often leads to inaccurate
sampling results [26]. The approach used in HyMM is
described in Sec. 3.2.

3.2 Sampling Hot/Cold Regions

HyMM monitors the number of TLB misses instead of the
access_bit to find Hot/Cold regions. HyMM is an OS mod-
ule enhanced from [37] (the prior work can merely get the
overall number of TLB misses for a specific app). Adding
a shadow array in VMA, HyMM can get TLB misses for
each page. Generally, cold pages that are rarely accessed
have only a small number of TLB misses, while hot pages
usually incur a large number of TLB misses, if they are
frequently touched. In a program with a large working
set, hot pages will be swapped in/out of the TLB repeat-
edly. By monitoring the number of TLB misses, we can
obtain the distribution of TLB misses for the entire
memory region and further divide the memory address
space into many regions based on hot or cold patterns.

Pages that are “very hot” might be kept in the TLB and
thus cause fewer TLB misses than cold pages do. We want
to find out how many pages are in this category. In our
experiments, the pages whose TLB miss count is below 10
in the sampling period (5s) are classified as cold pages2,
and we further check their access_bit to discern whether
they are hot pages or not. Here “hot” refers to pages that
are touched in 3 consecutive scan intervals (2s). The ex-
periment reveals that this special category of pages can be
ignored for two reasons. Firstly, the proportion of such
special pages is quite small. Taking Memcached as an
example, only 0.18% of the pages on average is actually
hot, but is misclassified as cold. Secondly, the active con-
tent of these pages will likely reside in LLC for a long
time without accesses to main memory.

We illustrate Memcached and Aerospike in Fig.2 to
show the effectiveness of our approach. The memory
pages in a range of specific memory addresses that exhib-
it high TLB misses are considered as hot pages. HyMM
classifies pages with more TLB misses as hot. HyMM can
find out the hot regions for these 2 cloud applications in
their memory address spaces. Note that hot and cold
pages are relative, because we want to select relatively hot

Fig.3. History window and prediction effectiveness. This figure sum-
marizes extensive and diverse cases from all of the SPECCPU 2006
apps and cloud workloads averaged together.

pages for migrations (details are in section 4).

3.3 Monitoring Write/Read Patterns

In the next step, we will analyze the pages in the hot re-
gion and examine their write and read patterns by exam-
ining the dirty_bit in their PTEs. Previous studies
[26,35,58] show designs that predict future memory ac-
cess patterns using recently monitored memory page-
level access patterns. We are challenged by two questions:
1) how much history information should be used to cap-
ture valid memory patterns? And, 2) how long can will
the memory patterns continue in the coming future? In
order to address these questions, we analyze a large
number of memory traces with records of write (i.e.,
dirty_bit=1) and read (i.e., dirty_bit=0) patterns (the sam-
pling interval is 2s) from SPEC and cloud workloads, e.g.,
Memcached, Aerospike and etc., to reveal the predictive
power of the latest history pattern records for finding the
future duration of the current state, and the prediction
accuracy for different history lengths. We denote the
length of the history as window_len (each window has
window_len total write/read records). A page is consid-
ered Write-Domain (WD) when at least half of the entries
in the history window have non-zero dirty bits, otherwise
it is Read-Domain (RD). As shown in Fig.3, in the case
where the window_len is 8 (i.e., only the latest 8 consecu-
tive history records are used in prediction), we can pre-
dict the memory access pattern with 96% accuracy on
average. A short history (e.g., window_len is 4/6/7) does
not have enough information to achieve an accurate pre-
diction (with an accuracy below than 95%); on the other
hand, an over-length history larger than 8 brings more
noise data, thus hurting the prediction accuracy and in-
creasing the sampling overheads. Therefore, we predict
the future memory pattern using a history of length 8.
According to the statistics shown in Fig.3, a memory pat-
tern predicated using a history trace is expected to keep
stable for 10 sampling intervals 95% of the time which is
considered sufficiently long to avoid the “thrash-out”
phenomena caused by miss-prediction and to avoid un-
necessarily migrating pages.
Sub-region Sampling: Monitoring all pages at all times to
collect 8 history records, even for a specific hot region, is
quite expensive and impractical in a cloud computing ap-

2 The constants in our design (current and following sec.) are empirical

values based on the analyses of all programs from SPECCPU 2006 and
cloud computing workloads. Thus, we conclude that our approach may
work well in many real cases. These values can be adjusted as neces-
sary in the conditions of extreme environment changes.

LEI LIU ET AL.: HIERARCHICAL HYBRID MEMORY MANAGEMENT IN OPERATING SYSTEM 5

Fig.4. Stream vs. Non-stream (mcf) access pattern.

Fig.5. HyMM in a nutshell (a case).

plication due to its large memory footprint. To further
reduce the overhead, we use a technique we call sub-
region sampling. The technique has two steps: first, it
divides the pages in a hot region into sub-regions; second,
it uses a single page as the sample for each sub-region. As
the first step, for a specific hot region, we scan and check
all of the memory pages’ dirty_bits to identify whether
they are modified (write) or not (read). After a few inter-
vals (three 2-second intervals by default), adjacent pages
that show the same read/write dominance are grouped
into sub-regions. Then, one page in each sub-region is
randomly selected as a representative, and only this rep-
resentative is monitored in the next 5 monitoring inter-
vals. Doing so is reasonable, as our comprehensive exper-
iments show that for a specific write or read region, 98.8%
pages exhibit similar features on average. Discussed be-
fore, we collect 8 history records for these sampled pages
to predict the future patterns for a specific sub-region
according to the dominant patterns.

3.4 Detecting Pages with Stream Access Patterns

Besides the hotness and write/read patterns, monitoring
TLB misses can easily identify stream-like memory usage.
Fig.4 shows a clear streaming pattern in the address space
of STREAM [13]. The left sub-figure shows the TLB miss
frequency is 1 per page per half-second interval for the
touched pages (indicated by black bars). With the time
passing from left to right, the memory access exhibits a
stable progression over the entire memory space from
bottom to top. STREAM shows highly regular TLB miss
counts for its pages, incurring an identical number of TLB
miss per page. Fig.4 further shows that the distribution of
the TLB miss count for pages in a range of specific
memory addresses in box graph. The variation is minimal
for STREAM (i.e., IQR3 [11,12] is 0.28 on average). In con-
trast, for mcf, which does not have streaming access, the
TLB miss count has considerable variations among the
pages in a range of specific memory address (i.e., IQR is
24.4 on average), showing large variation in TLB miss
counts. HyMM can easily meature and identify stream-
like access pattern in practice.

Fig.6. Sampling overhead comparisons.

3.5 Using HyMM on Hybrid Memory Systems

Fig.5 shows a case for the time overview of the HyMM
design, including monitoring TLB misses, tracking the
access_bit and dirty_bit in PTE. On hybrid memory system,
application’s data is initially stored in NVM. At first,
HyMM monitors TLB misses for 5 seconds to discern hot
and cold page regions, and then enables dirty_bit usage to
identify the write/read patterns using sub-region sam-
pling (eight 2-second sampling intervals by default). So
far, in Fig.5, this period analyzes NVM data, selects pages
whose TLB miss count is 10 or higher, and sorts them in
the MigrateQue for later migration. We call it the prepara-
tion period. It lasts for 21 seconds (s). Note that to reduce
the monitoring overhead in practice, HyMM stops moni-
toring for a specific page once its miss count reaches an
upper bound (i.e., 200). The parameters can be tuned ac-
cordingly. An action period is launched immediately af-
ter the preparation and run in the next 20s. In this period,
the queued pages are moved to DRAM and then tracked
only by monitoring the access_bit with a low frequency.
The alternation of preparation and action then repeats.
These parameters can be adjusted2.

We conduct experiments to show the advantages of
HyMM using Memcached (4GB) and Aerospike (6GB);
our experimental results are shown in Fig.6. While differ-
ent approaches generate similar page hotness results (at
most 3.9% and 5.2% differences for Memcached and
Aerospike, respectively), the average sampling overhead
of HyMM is around 1/5th that of the approaches that only
use TLB misses counting [26,37] and 1/10th that of ap-
proaches that only use access_bit sampling [53,87]. Addi-
tionally, HyMM not only identifies the hot and cold pages
with a lower sampling overhead but also can capture the
read and write patterns at runtime via monitoring the
dirty_bit. HyMM works well in practice as it introduces
new monitoring methods while incorporating the ad-
vantages of previous methods. HyMM samples a small
number of pages for these applications and the amortized
overhead is quite low. More details are in Sec. 6.1.

4 Memos

4.1 Overview of Memos

This section details the Memos design. In Fig.7, with
HyMM, Memos obtains the workloads’ memory access
patterns and then the Full Hierarchy Memory Manage-
ment Framework leverages the information to schedule
memory resources across the entire memory hierarchy
(Sec.4.2). The framework has two key components: a two-
tiered Buddy System that manages the NVM and DRAM
in a hybrid way (Sec.5.1), and a highly efficient data mi-
gration engine (Sec.5.2). The physical address is split into

3 The interquartile range (IQR) is a measure of variability in Box graph.

Large IQR means large variation and unstable [11].

6 IEEE TRANSACTION ON PARALLEL AND DISTRIBUTED SYSTEMS

Fig.7. Overview of Memos (w/HyMM as a component).

DRAM and NVM segments. Moreover, memory pages
will be migrated across channels when their patterns
change.

4.2 Full Hierarchy Management Framework
Fundamental Framework: We construct the memory
management framework by leveraging the Page-Coloring
approach [48,51,52,53]. As the address mapping illustrat-
ed in Fig.8, for a 4K-size page (0~11 bits denote the offset
within the page) on a typical 64-bit architecture, bit 32 is
used as the channel-bit. Therefore, by selecting a physical
page with a specified value (0 or 1) at bit 32, we can con-
trol which channel, and consequently which memory
segment (DRAM or NVM) to accommodate the page. For
cache resource, on our experimental platform, each
unique combination of cache index bit values (bits
15,16,17,18 in the page frame denote cache sets index, and
also some rows in a memory bank, as shown in Fig.1), or
cache-set color, dictates a slab (1/16 of the total 8MB LLC
capacity) of LLC resource. Thus, we can adjust cache re-
source allocation by leveraging these bits. Moreover, for
the memory bank resource in both NVM and DRAM
channels, we monitor the bank utilization and enable the
bank scheduling by using the bank index bits (bits
21,20,14,13 and 12 in Fig.8). Usually, bits 21,20 are used as
a combination to uniquely dictate a group of 8 banks
(called a bank-group color), and Memos can assign addi-
tional bank groups by using more than one bank-group
colors. Leveraging these bits that indicate the different
type of memory resources, Memos forms previously un-
used full hierarchy allocation approaches.

Channel Allocation: At the channel level, Memos se-
lects a memory medium to map pages to according to
their online write/read features and aims to maximize the
overall bandwidth provided by both the DRAM and
NVM channels used together. Memos attempts to place

the hot pages (i.e., freq-touched/stream-like) onto DRAM,
especially for those with WD features. WD pages are
more likely to be moved to DRAM than RD pages, as on
NVM the longer write operation latency incurs a more
significant performance loss. Cold pages are kept in NVM
to save energy and reserve DRAM space for stream-like,
hot, and WD pages. At runtime, Memos monitors pages
using HyMM and migrates them when the access pattern
changes.
 Bandwidth Scheduling: Memos’ design goal is to
maximize the combined bandwidth for both DRAM and
NVM, which aims to avoid a significant decrease in NVM
bandwidth that cannot be compensated by an increase in
DRAM bandwidth. During an action period (as shown in
Fig.5), Memos migrates up to 10,000 hot pages from the
MigrateQue to DRAM and then monitors the resulting
bandwidth on both the DRAM and NVM channels. When
the DRAM bandwidth improvement is less than that
gained in the previous epoch, Memos will reduce the
number of the migrated pages (i.e., 1/5th that of the pre-
vious migration by default) at the next period. And, if
Memos finds the NVM bandwidth decreases drastically
more than the DRAM bandwidth increases, then it will
stop migrating pages to DRAM for the upcoming period;
moving more pages will not improve bandwidth utiliza-
tion due to DRAM bandwidth is near saturated, but can
further decrease NVM bandwidth, hurting the overall
bandwidth. Finally, Memos may migrate some pages
back to NVM to compensate for the NVM loss.
 Cache and Bank Associated Allocation: Besides,
Memos tries to hierarchically place data blocks according
to the memory hierarchy details, thus avoiding memory con-

flicts and improving the memory utilization.

From the view of Memos, LLC is partitioned into 16
slabs (in Fig.8) by using LLC index bits (e.g., 15, 16, 17, 18
bits), and each slab denotes a group of LLC sets (i.e., 512
cache sets on our platform). Memos uses Algorithm_1 to
record the utilization of each cache slab and memory
bank in Cache/Bank_Frequency_Table. Each table is an
array of integer-unsigned long pairs representing the id
of bank or cache slab and the corresponding number of
hot pages mapped to it, i.e., <Bank/Cache_Slab ID, Freq.>.
The tables are in OS kernel. Our system has at most 16
cache slabs and 160 banks, thus the memory occupation is
at most 2.1MB. The allocation process works as fellow:

Fig.8. A case for address mapping of MCHA on a typical i7 machine [21,53] and four typical cases of Memos’s working process.

LEI LIU ET AL.: HIERARCHICAL HYBRID MEMORY MANAGEMENT IN OPERATING SYSTEM 7

 (1) By default, the LLC slabs are further divided into
three segments, i.e., the slabs for stream-like, rarely-
touched and the freq-touched pages. The design tries to
map all of the stream-like pages into a small specific re-
served slab (i.e., stream-like slab 0 in Fig.8), isolating them
so the LLC can help to avoid interfering with other data,
especially the data from the NVM channel. Meanwhile,
all those rarely-touched pages are mapped together into
another reserved slab (slab 15), as usually these pages
consume very small cache capacity. Moreover, seen from
Fig.8, larger LLC quotas, from slab 1~14, are used for freq-
touched pages (i.e., freq-touched slabs).
 (2) A PFN encodes both cache and bank access. Thus
through iteratively recording pages’ accessing times by
monitoring TLB misses and access_bit in Algorithm_1,
Memos records the corresponding cache slab and bank
utilization in Cache/Bank_Freq_Table. As demonstrated
in Fig.8, a lower frequency value means a lower utiliza-
tion. When moving pages between NVM and DRAM,
Memos will place them to the underutilized banks (i.e.,
these lower frequency banks in Bank_Freq_Table) for bet-
ter bank parallelism, thus avoiding bank conflicts caused
by blind mapping. Simultaneously, by placing pages to
the rows whose index bits are associated with the low
utilization cache slabs in Cache_Freq_Table, data can be
loaded to these underutilized cache slabs. Doing so, as
demonstrated in Fig.1, Memos can help to improve both
cache and memory bank utilization while reducing the
memory conflicts in those “hot” regions at memory hier-
archy.
 (3) If the associated memory regions (i.e., rows) in tar-
get bank in (2) are not free, Memos will try to select other
underutilized slabs in Cache_Freq_Table accordingly,
whose associated rows are still in this bank. If the
memory banks in the DRAM channel cannot provide suf-
ficient capacity, Memos will just migrate N =
 ∑ ∑ (𝐹𝑀𝐶𝑖𝑗/𝑃𝑎𝑔𝑒_𝑆𝑖𝑧𝑒)𝑅𝑂𝑊_𝐺𝑅𝑂𝑈𝑃−1

𝑗=0
𝐵𝐴𝑁𝐾−1
𝑖=0 pages with

higher migration priority (i.e., higher number of TLB
misses) in MigrateQue, where FMCij denotes free memory
capacity (FMC) of rows in jth row_group (corresponds to
jth cache slab) within ith DRAM bank.

(4) Memos will enlarge the reserved slabs if the associ-

Fig.9. Overall performance throughput improvement.

ated memory capacity cannot meet the special require-
ments (e.g., stream-like application with large memory
footprint).
 (5) As shown in action period in Fig.5, the hot pages in
DRAM are also tracked by monitoring the access_bit with
the low sampling frequency. When Memos finds the pag-
es are cold (access_bit is 0 in 2 consecutive 2-second inter-
vals), it will migrate them to NVM, saving more space for
hot pages. This is the Memos’ reclamation process for the
DRAM.

4.3 Cases on Overall System Working Process

To better understand the overall scheduling process, Fig.8
shows several typical cases. As illustrated in case①, pages
that exhibit stream-like patterns are mapped into cache
slab 0. Meanwhile, they are distributed into different
memory banks for better bank-level parallelism (i.e.,
15~18 bits, denoting both the row and cache set index, are
with the value of 0). Similar things happen in cache slab
15, which is reserved for rarely-touched pages, especially
for these pages with relatively lower access frequency
that are kept in the NVM side (case②). For NVM, ideal
bank-level parallelism can hide the expensive access la-
tency (sometimes raised by memory interferences), as
NVM systems are able to have more memory banks than
DRAM. In case③, Memos migrates a hot/WD page from
NVM to DRAM across channels. It first selects the coldest
memory bank (for higher bank parallelism and overall
utilization) and then maps the page to the row associated
with the cache slab with the lowest utilization (slab 9 in
Cache_Freq_Table). Moreover, the NVM channel can also
provide bandwidth. As shown in case④, data blocks from
RD pages can be loaded to cache directly through the
NVM channel. Note that for the rest of the RD pages with
the stream-like feature in NVM, Memos will also map
them to the reserved slab 0. Even for a specific channel,
hot pages are migrated from highly utilized banks to low-
er ones to balance the overall utilization. On average, our
full hierarchy memory management framework outper-
forms newly proposed policies by around 10.0% (details
are in Section 4.4).

4.4 Effectiveness on Throughput and QoS on Real
System

This section has 3-steps experiments on the platform with
an Intel i7-series/2.8Ghz CPU to show the effectiveness of
our above-mentioned new approach. We employ 10
workloads, and each of them consists of 4~8 applications
from SPECCPU 2006 (refer to appendix; at least one ap-
plication has the stream-like pattern). We use DRAM in
both of the DRAM and NVM channels. In Step-1, we only

8 IEEE TRANSACTION ON PARALLEL AND DISTRIBUTED SYSTEMS

enable cache partitioning [48] in the LLC to migrate the
memory interferences. In Step-2, we enable cache and
bank associated mapping but without the memory chan-
nel-level consideration [53], i.e., mapping memory pages
evenly across two channels even for the pages with highly
aggressive stream-like patterns. Step-1 and Step-2 are
with dual-channel interleaving scheme. In Step-3, i.e.,
Memos, we enable our newly proposed full hierarchical
approach, which not only has the cache and bank associ-
ated mapping but also schedules memory pages across
channels, such as confining pages with stream-like pat-
terns into a specific channel for reducing the bandwidth
contention for the NVM channel. The general baseline is
the unmodified Linux kernel. Fig.9 illustrates the experi-
mental results. Step-3 outperforms Step-2 by 7.2% (up to
11.0%) on average. Step-3 achieves an average 23% per-
formance gain over the baseline. Moreover, Step-2 outper-
forms the Step-1, as it can improve the memory utilization
at LLC and bank simultaneously as discussed in Sec.4.2
and Fig.8. Note that, with the channel-interleaving
scheme, neither of the approaches of cache and bank as-
sociated mapping (Step-2) and the cache-only partitioning
(Step-1) can constrain pages with aggressive accesses into
a specific channel, thus causing all-to-all memory inter-
ferences in all channels. Our new approach can reduce
these interferences. As the program behavior varies, the
magnitude of the improvement also varies, from the low-
est 17.0% to the highest 28.1%. The improvement is
strongly correlated with the number of stream accesses.

Moreover, our results show that bank imbalance is re-
duced by 60.1~69.9%, and the cache misses are reduced
by 27.4% on average across both channels, with a
42.1~50.0% reduction on the NVM channel. These benefits
also contribute to the improvement of QoS (indicated by
Max Slowdown [53,65,66]) by 23.6% on average. Take
workload 9 as an example. Memos improves QoS by
34.1%, while the other two schemes (i.e., Step-1, Step-2)
improve QoS by 13.2% and 19.4%. Memos outperforms
them by 20.9% and 14.7%, respectively. For the band-
width on MCHA, as mentioned before, Memos does not
merely maximize the DRAM bandwidth while hurting
the bandwidth in other channels. In our experiments,
Memos tries to maximize the combined bandwidth of all
memory channels, thus improving the overall bandwidth
on MCHA by 24.6% on average. To sum up, the experi-
ment shows our memory framework is effective.

5 Kernel Modules and Emulation Platform

5.1 Two-tiered Buddy System in Memos

To support Memos’ full hierarchy memory framework,
we are the first in designing a two-tiered Buddy System
by extending Page-Coloring to reorganize the free pages
in Linux kernel with the channel, bank and cache bits in
PFN simultaneously. With the channel bit, we reorganize
all physical pages into two sub-buddies logically, one for
pages in NVM and the other for pages in DRAM. In each
sub-buddy, we can still use other index bits (cache/bank
bits) to allocate resources. By doing so, Memos tags re-
sources according to hierarchy details, material features,
and therefore can efficiently allocate them accordingly.

Nine bits (21,20,18~12 bits) in PFN form a set of 29=512
colors. Memos uses Algorithm_2 which works as a hash-
ing index to allocate pages corresponding to any cache
slabs, channel and NVM/DRAM banks with O(1) time
consumption, even for the cloud applications. The prima-
ry memory allocation interface in the kernel is al-
loc_resource (int channel_id, int cache_slab, int bank_id),
which is used to obtain a group of memory resources. By
adding resource control parameters into Task_Struct (de-
notes Process in Linux kernel), users can leverage this in-
terface to map the applications’ data heap according to
their requirements.

5.2 Data Migration Engine

To improve the efficiency of data migration, we design
and implement a new engine, which combines CPU and
DMA-based page migration. First, using the page copy
primitive in OS kernel, we implement a lock involved
CPU-based page migration approach. This approach
locks the pages and the process cannot modify them dur-
ing migration, therefore ensuring the data consistency.
CPU migration performs better than DMA, as DMA fre-
quency is lower than that of CPU and its initialization
time is non-negligible. Upon migrating 10,000 pages, CPU
approach takes 43ms, whereas DMA takes 57ms in our
experiments. Most importantly, lock involved CPU mi-
gration is effective in the cases when WD pages are
moved from NVM to DRAM, as we need to ensure data
are consistent with migration.

We devise a DMA-based lockless migration approach
to migrate pages from DRAM to NVM. As mentioned
before, since cold pages are likely to be evicted from
DRAM, it is not a good choice to waste the CPU time on
migrating these inactive pages. Instead, Memos uses a
lockless DMA approach: before migration, a page’s
dirty_bit is set to 0, and not locked when migrated
through the DMA channel. We check whether these pages
are modified during migration by checking the dirty_bit in
PTE after the migration finishes. We then create the new
PTEs for the successfully migrated pages, whose dirty_bit
are 0 (i.e., not modified during migration), and discard
the dirty pages. The modified pages are still left on
DRAM and will be considered for future reclaim (migra-
tion), and the freed pages on DRAM are added to a free
list. This is a cost-effective approach in cloud environ-
ments, as DMA migration is in parallel with CPU opera-
tions and will not occupy CPU for migrating cold data.

LEI LIU ET AL.: HIERARCHICAL HYBRID MEMORY MANAGEMENT IN OPERATING SYSTEM 9

Fig.10. Amount of cold data, hot pages w/ WD and RD patterns in
several typical applications in SPECCPU 2006.

TABLE 1. PARAMETERS OF NVM, DRAM AND CACHE [34,69,
54,56]

 Compared with the original DMA approach that needs
to lock migrated pages, the lockless approach does not
block the processes so that they can use these data during
the migration, hence the overall system performance will
not be negatively affected. Moreover, it is possible that
these modified pages are the active pages, which should
not be evicted incorrectly. In such cases, the lockless ap-
proach offers a chance to correct the eviction decision, as
these modified pages are discarded and not be evicted
out of DRAM. In practice, Memos uses CPU with on-
demand approach to migrate pages from NVM to DRAM,
and adaptively enables lockless DMA migration to evict
cold pages from DRAM. We show two of the interfaces.
The interface migrate_cpu (struct page * src, stuct page * des)
is evoked when Memos moves a specific number of hot
and WD pages to DRAM. In contrast, with Scatter-Gather
[8] mode, after the DMA initiation, DMA migration ap-
proach iteratively uses the interface
dma_memcpy_pg_to_pg (dma_channel, oldpage, newpage) to
move pages. Thus it can efficiently move a large number
of pages with discrete addresses.

5.3 Emulation of MCHA and Methodology

All of the above-mentioned components are implemented
in the Linux kernel. Besides, we emulate MCHA using the
channel-partitioning approach [52,66] to divide the
memory address space into DRAM and NVM segments
on a server with an Intel i7-860/2.8Ghz CPU and DDR3
memory. Memos runs on it. In the experiment, we use the

Fig.11. Amount of cold data, hot pages w/ WD and RD patterns in
cloud computing cases4 w/ 1.6GB~24GB footprints.

PIN tool to collect workloads' traces after the warm-up
period and feed them into an x86 multicore hybrid
memory simulator. The simulator's framework is based
on the open source hybrid memory simulator [20,58]. We
enhanced this simulator’s cache with Dinero IV [2] and its
memory with DRAMsim2 [1] including the NVM config-
uration. Moreover, we record the overheads from the OS
at runtime such as the PTE updates and page migrations
(e.g., CPU uses 16800 cy per 4K page migration using
CPU copy and 4200 cy for DMA migration) as well as the
sampling overheads using HyMM, and parameterize
them into this simulator. Our simulator has memory con-
trollers for DRAM and NVM, respectively. Each control-
ler is with FR-FCFS scheduling policy, 64-bit channel, 64-
entry read request queue and 32-entry write buffer. Table
1 shows more parameters, and memory bank information
can be found in Sec.6.2.

6 Evaluations

6.1 Effectiveness of Memos on Real System

We firstly test Memos by using SPEC applications. In our
experiments, we initially map applications to NVM,
whose physical address space starts from 4GB (i.e., NVM
channel bit=1 in Fig.8), as NVM might be used as storage
in practice. We report the breakdown of WD/RD hot and
cold pages for astar, lbm, libquantum and multi-app case
that includes several applications run together. Generally,
Memos moves hot pages to the DRAM channel, while
keeping cold data in the NVM channel. Taking astar in
Fig.10 as an example, in the DRAM channel, the footprint
of WD pages increases stably at the beginning, indicating
that hot pages with WD features are migrated to DRAM
continuously. Meanwhile, the number of WD and RD

4 Memcached (twitter dataset, with random requests, 195K/s random

requests [4]), Redis (redis-benchmark [10] with default 50 Clients, 290K/s
requests with Zipfian distributions), Aerospike (C Client benchmarks [15]
with 145K/s operations), and MySQLslap (default setup w/ 40 connec-
tions. These workloads are widely used in big data and cloud cases [38].

10 IEEE TRANSACTION ON PARALLEL AND DISTRIBUTED SYSTEMS

Fig.12. Execution time normalized to 32GB DRAM. Lower is better;
x-y means MCHA with xGB DRAM and yGB NVM.

pages in the NVM channel shows a decreasing trend, il-
lustrating these frequently used pages are migrated into
DRAM while pages with relative low memory access fre-
quency (cold pages) are left in NVM.
 The curve often fluctuates, shown in astar, as it may
exhibit diverse and dynamically changing memory access
behaviors. For these write-heavy workloads, such as lbm
in Fig.10, Memos identifies these WD pages, and migrates
them into DRAM channel, and thus we can see most of its
memory pages are in DRAM channel. The libquantum
figure shows a similar trend. However, libquantum has
many cold pages, and therefore Memos keeps them in
NVM channel. The bottom-right subfigure shows the
metrics for a multi-programmed workload including sev-
eral SPEC applications. We observe that Memos can han-
dle the diverse memory access patterns well by segregat-
ing pages into different memory sub-systems based on
memory access frequency and write/read patterns.
 Fig.11 shows that Memos works well for these cloud
computing applications. For these applications, only a
small number of pages are hot, and the hot/cold status of
these pages changes frequently. During a preparation
period, HyMM can detect these hot pages with overheads
of 0.15s, 0.72s 1.18s and 0.79s for Memcached,
MySQLslap, Redis, and Aerospike, respectively. For ex-
ample, there are overall 245 sub-regions in Aerospike
(each has 1299 pages on average). HyMM only monitors
0.08% of the pages out of the 1299*245 pages, accounting
for only 0.02% of the pages in its 6GB memory space. In
contrast, just tracking the access/dirty_bit is not cost-
effective. It takes 3~6s and is still less accurate when iden-
tifying the access frequency and write/read patterns than
HyMM, because monitoring has to periodically walk the
page table for these applications’ whole memory spaces
with several GB to 24GB.

6.2 Overall Performance on Emulation Platform

To show the advantages of using NVM, employing Mem-
cached, we conduct a set of experiments by putting
5.0%~20.0% of the data into main memory and leaving the
rest of them in the disk, emulating the cases when the
main DRAM cannot accommodate the entire working set.
The total data size of Memcached is 10GB in our experi-
ments. Our experimental results show that 6.7%~16.7%
requests suffer from the long latency of disk (~100X long-
er than accessing DRAM), leading to around 15.0%
throughput lost on average. The long latency disk access-
es hurt users’ experience. In comparison, all data can fit
into the NVM due to its high density and low power, and
they are considerably faster than disk accesses (~20X).

Fig.12 shows the normalized execution time of the typi-

Fig.13. Performance breakdown. In Case 1, memory pages are ran-
domly mapped between DRAM and NVM; In Case 2, memory pages
are mapped using previous sampling and migration approaches
[57,87]5; Case 3 uses Memos. Lower is better, indicating more com-
puting time.

cal configurations across diverse benchmarks. On average,
relative to the baseline 32GB DRAM system, the systems
with all NVM perform worse due to NVM’s longer latency.
Moreover, in the hybrid DRAM-NVM cases, if the memory
pages are randomly mapped between memories, the NVM
latency is also an un-negligible factor and leading to lower
overall performance. In contrast, in the cases where 4GB
DRAM is used as a buffer for NVM (similar to [71]), we get
nearly DRAM-level performance, as most of the hot pages
are moved to DRAM at runtime by hardware. This ap-
proach has around 4% higher execution time than all
DRAM cases due to the overhead of hardware sampling
and data migration. Memos provides near or even better
performance on MCHA than system with all DRAM
(around 5% benefits, on average). This is because: 1) our
experimental results show that on average 83.2% of hot
pages with write patterns are migrated to DRAM at
runtime, therefore the overall latency of the hybrid
memory system is approximately the same as the DRAM-
only system; 2) Memos can use the NVM channel to pro-
vide data to the CPU, thus having a higher overall band-
width than only using DRAM; 3) the full hierarchy mecha-
nism in Memos can reduce the memory interferences
across the entire memory hierarchy, thus reducing the av-
erage memory access time; 4) HyMM and data migration
engine have low overheads.

Moreover, we test the scalability of Memos. In our ex-
periments, we use NVM with the capacity from 32GB to
512GB, and the number of bank increases from 8 to 128
(4GB/bank). We find Memos scale well and the overall per-
formance is even better with larger NVM capacity, as it can
have more memory banks work in parallelism.
 Performance Breakdown: Fig.13 shows the performance
breakdown of Memos’ runtime across several typical cloud
workloads. The runtime includes memory accesses time,
sampling, page migration overhead and computing time.
The most time-consuming part is memory access. Without
any optimizations, data are randomly mapped between
DRAM and NVM (case 1). Due to NVM’s longer latency,
the overall time costs of memory accesses vary between
40.3% (Redis with fewer memory accesses) and 76.9%
(Aerospike). Prior efforts [57,87] conduct a page-level sam-

5 We implement a baseline system (case 2) that absorbs the core ideas

in related OS-level work [57,87]. [57] heavily relies on the PTE walkers,
and the clock-hand algorithm (its Fig.6) for placing pages is complicated
in practice. And, [57] is w/o details on memory arch-level optimization and
doesn’t consider the migration method and overheads. [87] samples
PTEs in a jumping approach, but it doesn’t provide the WD info., and it is
not accurate for the poor locality cases in cloud environments.

LEI LIU ET AL.: HIERARCHICAL HYBRID MEMORY MANAGEMENT IN OPERATING SYSTEM 11

pling and move the hot/WD pages to DRAM, thus reduc-
ing the memory access latency (Case 2) 5. However, due to
the high sampling and page migration overheads, especial-
ly for the cloud workloads, the overall performance im-
provement is limited. In the case of Memcached and Redis,
the overall performance degrades because the sampling
and page migration overheads offset the benefits.

Mentioned in Sec.3, Memos’ sampling overhead is less
than 1/10 of that of prior efforts, and the migration over-
head is roughly reduced by more than half due to using
DMA evicting cold pages (Sec.5). More importantly, illus-
trated in Fig.13, the full hierarchy memory mechanism fur-
ther reduces the memory latency (Sec.4), and thus the
overall computing time is significantly improved by
around 20%.
TABLE 2. 128GB NVM’S LIFETIME (YRS) W/ AND W/O MEMOS.

Bench/Policies/
Time (years)

Rand
Map

Memos w/
MCHA

Memcached 0.50 12.2

mcf 0.27 9.3 Aerospike 0.43 10.1
hmm 3.6 15.8 Redis 0.52 13.4

Hmm,xal,mcf 0.24 9.1 Mysqlslap 1.44 15.6

6.3 Details on Energy, Lifetime and Migration Over-
head

Energy: We use Micron System Power Calculator [19]. For
NVM system, we use the values of read-power, write-power
and idle-power of NVM relative to DRAM. Memos with
MCHA (4GB DRAM and 32/128GB NVM) saved 29% and
82.5% energy on memory systems compared to 32GB and
128GB all DRAM, respectively. The saving energy is mainly
from the near zero refresh operation on NVM.
 NVM Lifetime Improvements: For lifetime calcula-
tion, we model the NVM with the cell write endurance of
107 in Table 1. The NVM is operated at 64 bytes blocks.
Also, we emulate the NVM that uses an effective write
leveling scheme (e.g., Start-Gap [70]), thus the overall
NVM manages to achieve an overall lifetime which is 95%
of the average NVM cell lifetime. Experimental results
(using the model in [71]) show that Memos on MCHA can
improve the NVM life by up to 34X (mcf) against the pol-
icy that randomly maps memory pages between DRAM
and NVM, as Memos moves 83.2% of Hot and WD pages
out of NVM, on average. Details are in Table 2. Besides
SPEC applications, NVM can also have longer lifetime in
the cloud computing workloads.
 Data Migration Overhead: The migration only hap-
pens in the 20s action period in each 40s interval (in
Fig.5), and the amortized overhead is low. Moreover, our
lockless DMA migration engine can share the burden for
CPU. For example, in case of Aerospike, Memos needs to
evict 3376 cold pages from DRAM to NVM when it runs
to 40th second. With our DMA-based lockless migration
approach, 98.6% of them are migrated via DMA and thus
saving CPU time for migration. 1.4% of them are modi-
fied (be active again) during the migration, and therefore
our approach correctly keeps them in DRAM as discussed
in Sec.5.2.

7 Related Work and Discussions

(1) New Memory Systems. Many studies design the new
memory architecture [25,32,34,46,71,88], as well as typical

studies in [27,42,56,72,82,86] optimize the memory controller
logic, buffer organization, write operations, and row-buffer
locality for NVM performance and security. Further work
studies the memory management and task allocation accord-
ingly [36,64,74,75,77], and even for big data and virtualiza-
tion environments [41,44,89]. For high reliability and availa-
bility, latest studies redesign systems (e.g., databases) for
platforms that use NVM [24,59,85] and end client devices
[43]. The approach in [44] extracts OS-level information
about an application’s memory usage to avoid page migra-
tions on hybrid memory systems. The work in [71] is a start-
ing point to address NVM’s challenges for main memory
systems by using DRAM as a buffer of NVM. This approach
benefits the overall system performance, NVM lifetime, and
reduces the write traffic. [33] uses NVM in GPU architecture.
Memos is an orthogonal design with these studies, and it is
cost-effective on the platforms with the horizontally orga-
nized hybrid DRAM and NVM memories (e.g., Lenovo’s
ThinkSystem SD650 servers [18] has 3D XPoint DIMM at the
same level with DDR DIMM at memory hierarchy). (2)
NVM Allocator. The work in [7] provides an open source
NVM allocator for both persistent and volatile usage.
SSDAlloc [29] provides an API to users for using SSDs on
hybrid memory systems. [76] describes a file-only principle
for NVM management, having a constant time memory op-
eration that is independent of size. Our work is complemen-
tary to these efforts. Memos tries to maximize the memory
utilization across the entire hybrid memory hierarchy, while
still being transparent to users and applications. (3) Page-
Coloring. Many previous studies [48,51,53] use cache/bank-
indexing bits in physical address mapping scheme to parti-
tion cache, banks and channels for performance. Our work
differs in the involved address bits, including not only the
cache and bank bits, but also the channel bits simultaneous-
ly. However, as our platform only has 1 channel bit, this
could be a limitation in our experiments. If a platform has
more channel bits, Memos could be extended to support
such cases by organizing the free pages to multi-tiered. (4)
Monitoring Memory Access Patterns. Previous work
[35,40,62,74] conduct online profiling by leveraging hard-
ware performance counters. Recent efforts also design the
OS-level memory page behavior monitoring approaches by
referencing TLB misses [26] and access_bit [80]. HyMM in-
cludes the advantages of monitoring the access/dirty_bit and
TLB misses, and can obtain the memory hierarchy utilization
on the fly at the OS level on commodity systems. Specifical-
ly, HyMM can detect page-level reads/writes and stream-
like memory patterns, which are critical to consider in a hy-
brid memory environment. (5) Page Migration on Hybrid
Memory Systems. [73] designs migration queues for DRAM
and NVM. [31] proposes a concurrent migration approach
that can migrate multiple pages efficiently. In [50], memif
redefines the DMA engine configuration to improve migra-
tion performance. In contrast, Memos’ migration engine
enhances DMA with a lockless approach and adaptively
enables the CPU and lockless DMA enhancements accord-
ingly. (6) Huge Page. HyMM supports huge page sampling.
Huge pages allow Memos to use NVMs, but the resulting
fragmentation is a challenge. The work in [67] skips hybrid
page blocks during compaction and [47] proposes asynchro-

12 IEEE TRANSACTION ON PARALLEL AND DISTRIBUTED SYSTEMS

nous allocation to create contiguous memory spaces. Our
future work will try to optimize Memos using these latest
huge page policies. (7) Wire Delays. Due to the page limit,
we only used average cache delay for all slices for which the
results showed performance improvements over the base-
line. However, the results could be further improved using
adaptive NUCA designs [30,39]. For example, we could
place hot sets into cache slices close to the cores and place
infrequently accessed data into slices far away from the
cores. (8) Mis-classifications and Rectification in HyMM. If
the applications change dynamically and change the
memory footprint, causing the hot/cold classification become
outdated, Memos will re-sampling and rectify the misclassi-
fications in next loop and enable migration accordingly. For
instance, the above-mentioned “very hot” pages that cannot
be found by monitoring TLB misses in section 3.2 could be
detected and reclassified in the next sampling, as the
memory pattern changes. The similar approach is also men-
tioned in [26]. (9) Memos and the Environments. We use an
Intel i7-860 CPU as an example in our experiments, as its
address mapping can be leveraged [51~54]. This CPU sup-
ports adjusting its address mapping policy to the one with
fewer overlapped bits that index both cache sets and DRAM
banks by modifying the configurations in BIOS, i.e., more
bits (15~18 bit) only index the cache sets. In this paper, we
use such an address mapping, as we want to show the re-
sults without many uncertain factors, such as reducing the
bandwidth and the number of available memory banks
brought by using overlapped bits [48,53,54]. And, we also do
not consider the I/O [60,61] and network issues [90] in cur-
rent design. On a multi-socket platform, Memos could be
extended to support by organizing the free pages to tiers
according to the number of sockets. And, we would try to
test Memos in virtualized environments with more re-
sources in future work.

8 Conclusions

This paper designs Memos for hybrid memory manage-
ment. It includes HyMM for capturing the online memory
utilization for workloads with large memory footprints
within low overhead; Full hierarchy memory framework to
schedule the memory resources across the entire memory
hierarchy according to memory patterns and NVM/DRAM’s
features; and a hybrid page migration mechanism, which
combines a lockless DMA engine and CPU-based migration
approach. Our experimental results show that Memos works
well on the platform with the hybrid DRAM-NVM memory
system. Memos can be deployed on systems equipped with
Fast-Slow memories potentially.

Acknowledgement

We thank the reviewers for their valuable comments and the
researchers who helped us on the previous manuscripts of
this paper. We also thank the previous student members in
Sys-Inventor lab for conducting some of the experiments.
The corresponding author is Lei Liu. Part of the technique in
this paper is based on Lei Liu’s previous work in ISCA,
PACT, TC, TACO, and ICCD [51~55], and the corresponding
author of these studies [51~55] is Lei Liu.

This project is supported by the National Key Research
and Development Plan of China under Grant No.
2017YFB1001602, and the NSF of China under Grant No.
61502452.

References

[1] DRAMSim2. http://www.eng.umd.edu/~blj/dramsim/

[2] DineroIV Trace-Driven Uniprocessor Cache Simulator.
http://pages.cs.wisc.edu/~markhill/DineroIV/

[3] Intel perfmon. http://oprofile.sourceforge.net/docs/intel-
perfmon-events.php

[4] Memcached. http://memcached.org/

[5] Pin 2.14.
https://software.intel.com/sites/landingpage/pintool/docs/7131
3/Pin/html

[6] Standard Performance Evaluation Corporation.
http://www.spec.org/cpu2006

[7] NVM Library. http://pmem.io/nvml, 2014

[8] https://www.kernel.org/doc/Documentation/DMA-API-
HOWTO.txt

[9] Redis: https://redis.io/topics/benchmarks

[10] https://redis.io/topics/benchmarks

[11] https://en.wikipedia.org/wiki/Interquartile_range

[12] https://en.wikipedia.org/wiki/Box_plot

[13] STREAM: https://www.cs.virginia.edu/stream/ref.html

[14] Aerospike: http://www.aerospike.com/

[15] https://github.com/aerospike/aerospike-client-
c/tree/master/benchmarks

[16] dev.mysql.com/doc/refman/5.7/en/mysqlslap.html

[17] https://mariadb.com/kb/en/library/mysqlslap/

[18] https://lenovopress.com/lp0636-thinksystem-sd650-direct-water-
cooled-server

[19] https://www.micron.com/support/tools-and-utilities/power-calc

[20] “Utility-Based Hybrid Memory Management Simulator,”
https://github.com/CMU-SAFARI/UHMEM, 2017.

[21] Intel® 64 and IA-32 Architectures Developer's Manual.
http://www.intel.com/content/dam/www/public/us/en/documents/m
anuals/64-ia-32-architectures-software-developer-manual-325462.pdf

[22] Intel. Intel and Micron Produce Breakthrough Memory Tech-
nology. https://newsroom.intel.com/news-releases/intel-and-
micron-produce-breakthrough-memory-technology/, 2015.
[Online accessed 29-April-2016].

[23] T. P. Morgan. Intel shows off 3D XPoint memory performance.
https://www.nextplatform.com/2015/10/28/intel-shows-off-3d-
xpoint-memory-performance/, Oct.2015.

[24] J. Arulraj, A. Pavlo, and S. R. Dulloor, “Let’s Talk About Stor-
age & Recovery Methods for Non-Volatile Memory Database
Systems,” In SIGMOD, 2015.

[25] B. Amrutur and M. Horowitz, “Speed and Power Scaling of
SRAM’s,” In IEEE Solid-State Circuits, 2000.

[26] N. Agarwal and T. F. Wenisch, “Thermostat: Application-
transparent Page Management for Two-tiered Main Memory,”
In ASPLOS, 2017.

[27] A. Awad, P. K. Manadhata, Y, Solihin, S. Haber and W. Horne,
“Silent Shredder: Zero-Cost Shredding for Secure Non-Volatile
Main Memory Controllers,” In ACM SIGARCH Computer Ar-
chitecture News, 2016.

LEI LIU ET AL.: HIERARCHICAL HYBRID MEMORY MANAGEMENT IN OPERATING SYSTEM 13

[28] A. Awad, A. Basu, S. Blagodurov, Y. Solihin and Gabriel H.
Loh, “Avoiding TLB shootdowns through self-invalidating
TLB entries,” In PACT, 2017.

[29] A. Badam and V. S. Pai, “SSDAlloc: Hybrid SSD/RAM
Memory Management Made Easy,” In NSDI, 2011.

[30] B. M. Beckmann, M. R. Marty and D. A. Wood, “ASR: Adap-
tive selective replication for CMP caches,” In Micro, 2006.

[31] S. Bock, B. Childers, R. Melhem and D. Mosse, “Concurrent
Migration of Multiple Pages in Software-Managed Hybrid
Main Memory,” In ICCD, 2016.

[32] A. M. Caulfield, A. De, J. Coburn, T. I. Mollow, R. K. Gupta, S.
Swanson, “Moneta: A High-performance Storage Array Archi-
tecture for Next-generation, Non-volatile Memories,” In Micro,
2010.

[33] S. Chen, et al, “Efficient GPU NVRAM Persistence with Helper
Warps,” In DAC, 2019.

[34] G. Dhiman, R. Ayoub, T. Rosing, “PDRAM: A Hybrid PRAM
and DRAM Main Memory System,” In DAC, 2009.

[35] Ramos. L. E, Gorbatov. E, Bianchini. R. “Page Placement in
Hybrid Memory Systems,” In ICS, 2011.

[36] M. Fu, D, Feng, Y. Hua, X. He, Z. Chen, W. Xia, F. Huang, Q.
Liu, “Accelerating Restore and Garbage Collection in Dedupli-
cation-based Backup Systems via Exploiting Historical Infor-
mation,” In USENIX ATC, 2014.

[37] J. Gandhi, A. Basu, M. H. Hill, and M. M. Swift, “A Tool to
Instrument x86-64 TLB Misses,” In SIGARCH Computer Ar-
chitecture News (CAN), 2014.

[38] R. Han, et al, “Benchmarking Big Data Systems: A Review,” In
IEEE Transactions on Services Computing (TSC), 2017.

[39] J. Huh, C. Kim, H. Shafi, L. Zhang, D. Burger, and S. W. Keck-
ler, “A NUCA Substrate for Flexible CMP Cache Sharing,” In
ICS, 2005.

[40] A. Jaleel, H.H. Najaf-Abadi, S. Subramaniam, S.C. Steely, and J.
Emer, “CRUISE: Cache Replacement and Utility-Aware
Scheduling,” In ASPLOS, 2012.

[41] M. R. Jantz, C. Strickland, K. Kumar, M. Dimitrov, and K. A.
Doshi, “A Framework for Application Guidance in Virtual
Memory Systems,” In VEE, 2013.

[42] L. Jiang, B. Zhao, Y. Zhang, J. Yang, B. Childers, “Improving
Write Operations in MLC Phase Change Memory,” In HPCA,
2012.

[43] S. Kannan, A. Gavrilovska, K. Schwan, “Reducing the Cost of
Persistence for Nonvolatile Heaps in End User Devices,” In
HPCA, 2014.

[44] S. Kannan, A. Gavrilovska, V. Gupta, and K. Schwan, “Het-
eroOS: OS Design for Heterogeneous Memory Management in
Datacenter,” In ISCA, 2017.

[45] S. Kanev, J. P. Darago, K. Hazelwood, T. Parthasarathy, R.
Moseley, G. Wei and D. Brooks, “Profiling a Warehouse-scale
Computer,” In ISCA, 2015.

[46] E. Kultursay, M. Kandemir, A. Sivasubramaniam, O. Mutlu,
“Evaluating STT-RAM as an Energy-Efficient Main Memory
Alternative,” In ISPASS, 2013.

[47] Y. Kwon, H. Yu, S. Peter, C. J. Rossbach, E. Witchel, “Coordi-
nated and Efficient Huge Page Management with Ingens,” In
OSDI, 2016.

[48] J. Lin, Q. Lu, X. Ding, Z. Zhang, X. Zhang, and P. Sadayappan.
“Gaining Insights into Multicore Cache Partitioning: Bridging
the Gap Between Simulation and Real Systems,” In HPCA,
2008.

[49] J. Liu, B. Jaiyen, R. Veras, O. Mutlu, “RAIDR: Retention-Aware
Intelligent DRAM Refresh,” In ISCA, 2012.

[50] F. X. Lin and X. Liu, “memif: Towards Programming Hetero-

geneous Memory Asynchronously,” In ASPLOS, 2016.

[51] L. Liu, et al, “A Software Memory Partition Approach for
Eliminating Bank-Level Interference in Multicore Systems,” In
PACT, 2012.

[52] L. Liu, et al, “BPM/BPM+: Software-based Dynamic Memory
Partitioning Mechanisms for Mitigating DRAM Bank-
/Channel-level Interferences in Multicore Systems,” In ACM
TACO, 2014.

[53] L. Liu, et al, “Going Vertical in Memory Management: Han-
dling Multiplicity by Multi-policy,” In ISCA, 2014.

[54] L. Liu, et al, “Rethinking Memory Management in Modern
Operating System: Horizontal, Vertical or Random?” In IEEE
Trans. on Computers (TC), 2016.

[55] L. Liu et al, “Memos: A Full Hierarchy Hybrid Memory Man-
agement Framework,” In ICCD, 2016.

[56] B. C. Lee, E. Ipek, O. Mutlu, D. Burger, “Architecting Phase
Change Memory as a Scalable DRAM Alternative,” In ISCA,
2009.

[57] S. Lee, H. Bahn, SH. Noh, “CLOCK-DWF: A Write-History-
Aware Page Replacement Algorithm for Hybrid PCM and
DRAM Memory Architectures,” In IEEE Trans. on Computers
(TC), 2014.

[58] Y. Li, S. Ghose, J. Choi, J. Sun, H. Wang and O. Mutlu, “Utility-
Based Hybrid Memory Management,” In Cluster, 2017.

[59] J. Lindstom, D. Das, T. Mathiasen, D. Arteaga, N. Talagala,
“NVM aware MariaDB database system,” In NVMSA, 2015.

[60] F. Lv, et al, “Dynamic I/O-Aware Scheduling for Batch-Mode
Applications on Chip Multiprocessor Systems of Cluster Plat-
forms,” In JCST, 2014.

[61] F. Lv, et al, “WiseThrottling: A New Asynchronous Task
Scheduler for Mitigating I/O Bottleneck in Large-Scale Data-
center Servers,” In J. of Supercomputing, 2015.

[62] H. T. Mai, K. H. Park, H. S. Lee, C. S. Kim, M. Lee, S. J. Hur,
“Dynamic Data Migration in Hybrid Main Memories for In-
Memory Big Data Storage,” In ETRI Journal, 2014.

[63] M. Marinella, “The Future of Memory,” In IEEE Aero-space
Conference, 2013.

[64] J. C. Mogul, E. Argollo, M. Shah, P. Faraboschi, “Operating
System Support for NVM+DRAM Hybrid Main Memory,” In
HotOS, 2009.

[65] O. Mutlu, “Main Memory Scaling: Challenges and Solution
Directions,” In More than Moore Technologies for Next Gen-
eration Computer Design, 2015.

[66] S. P. Muralidhara, L. Subramanian, O. Mutlu, M. Kandemir,
and T. Moscibroda,“Reducing Memory Interference in Multi-
core Systems via Application-Aware Memory Channel Parti-
tioning,” In Micro, 2011.

[67] A. Panwar, A. Prasad, K. Gopinath, “Making Huge Pages Ac-
tually Useful,” In ASPLOS, 2018.

[68] Y. Park, S. K. Park, K. H. Park “Linux Kernel Support to Ex-
ploit Phase Change Memory,” In Proceedings of Linux Sym-
posium, 2010.

[69] Moinuddin K. Qureshi, Gurumurthi. S, Rajendran. B, “Phase
Change Memory: From Devices to System,” In Synthesis Lec-
tures on Computer Architecture, 2011.

[70] Moinuddin K. Qureshi, M. Franchescini. V. Srinivasan, “En-
hancing Lifetime and Security of PCM-Based Main Memory
with Start-Gap Wear Leveling,” In Micro, 2009.

[71] Moinuddin K. Qureshi, V. Srinivasan, and J. A. Rivers. “Scala-
ble High Performance Main Memory System Using Phase-
change Memory Technology,” In ISCA, 2009.

14 IEEE TRANSACTION ON PARALLEL AND DISTRIBUTED SYSTEMS

[72] Moinuddin K. Qureshi, M. Franceschini, and L. Lastras Mon-
tano, “Improving Read Performance of Phase Change Memo-
ries via Write Cancellation and Write Pausing,” In HPCA, 2010.

[73] R. Salkhordeh and H. Asadi, “An Operating System Level
Data Migration Scheme in Hybrid DRAM-NVM Memory Ar-
chitecture,” In DATE, 2016.

[74] H. Seok, Y. Park, KH. Park, “Migration Based Page Caching
Algorithm for a Hybrid Main Memory of DRAM and PRAM,”
In SAC, 2011.

[75] Daniel J. Sorin, Milo M. K. Martin, Mark D. Hill, David A.
Wood, “Safetynet: Improving the Availability of Shared
Memory Multiprocessors with Global Checkpoint/Recovery,”
In ISCA, 2002.

[76] Michael M. Swift, “DRAFT: Towards O(1) Memory,” In HotOS,
2017.

[77] W. Tian, Y. Zhao, L. Shi, Q. Li, J. Li, CJ. Xue, M. Li, E. Chen,
“Task Allocation on Nonvolatile-Memory-Based Hybrid Main
Memory,” In TVLSI, 2013.

[78] X. Wu, J. Li, L. Zhang, E. Speight, R. Rajamony, Y. Xie, “Hy-
brid Cache Architecture with Disparate Memory Technologies,”
In ISCA, 2009.

[79] X. Xiang, C. Ding, H. Luo, B. Bao, “HOTL: A Higher Order
Theory of Locality,” In ACM SIGARCH Computer Architec-
ture News, 2013.

[80] M. Xie, et al, “SysMon: Monitoring Memory Behaviors via OS
Approach,” In APPT, 2017.

[81] C. Xue, Y. Zhang, Y. Chen, G. Sun, J. Yang, H. Li, “Emerging
Non-Volatile Memories: Opportunities and Challenges,” In
CODES+ISSS, 2011.

[82] H. Yoon, J. Meza, R. Ausavarungnirun, R. Harding, and O.
Mutlu, “Row Buffer Locality Aware Caching Policies for Hy-
brid Memories,” In ICCD, 2012.

[83] Wang. Z, Jiménez. D. A, Xu. C, “Adaptive Placement and Mi-
gration Policy for an STT-RAM-Based Hybrid cache,” In
HPCA, 2014.

[84] Z. Zhang, Z. Zhu, X. Zhang, “A Permutation-based Page Inter-
leaving Scheme to Reduce Row-Buffer Conflicts and Exploit
Data Locality,” In Micro, 2000.

[85] Y. Zhang, J. Yang, A. Memaripour, and S. Swanson, “Mojim: A
Reliable and Highly-Available Non-Volatile Memory System,”
In ASPLOS, 2015.

[86] L. Zhang, B. Neely, D. Franklin, D. Strukov, Y. Xie, F. T. Chong,
"Mellow Writes: Extending Lifetime in Resistive Memories
through Selective Slow Write Backs,” In ISCA, 2016.

[87] X. Zhang, S. Dwarkadas, K. Shen, “Towards practical page
coloring-based multicore cache management,” In EuroSys,
2009.

[88] P. Zhou, B. Zhao, J. Yang, Y. Zhang, “A Durable and Energy
Efficient Main Memory Using Phase Change Memory Tech-
nology,” In ISCA, 2009.

[89] R. Zhou, T. Li, “Leveraging Phase Change Memory to Achieve
Efficient Virtual Machine Execution,” In VEE, 2009.

[90] Y. Hu, T. Li, "Enabling Efficient Network Service Function
Chain Deployment on Heterogeneous Server Platform," In
HPCA, 2018.

Lei Liu is an associate professor in Institute of Computing Tech-

nology (ICT), CAS, where he leads the Sys-Inventor Lab. His re-
search interests include OS, memory architecture and computer
architecture. His efforts are published in ISCA, PACT, DAC, IEEE
TC, ACM TACO, and etc.

Shengjie Yang is a student member of Sys-Inventor Lab in ICT,

CAS. His work includes the OS design and optimizations on memory
systems. He is supervised by Lei Liu.

Lu Peng is a full professor at Louisiana State University (LSU). His

research interests include computer architecture, microarchitecture,
memory hierarchy and performance analysis. His efforts are pub-
lished in ISCA, HPCA, DAC, ICCD, ICS, and etc.

Xinyu Li is a student member of Sys-Inventor Lab in ICT, CAS.
His work includes OS design and GPU programming. He is super-
vised by Lei Liu.

Appendix: The workloads’ information is listed as below. As

mentioned in our paper, each workload has at least one libquan-
tum, which provides stream-like memory pattern.

Workload1: omnetpp, libquantum, mcf, Xalan

Workload2: omnetpp, libquantum*2, lbm, astar

Workload3: bzip2, libquantum*2, soplex, Xalan

Workload4: libquantum*3, mcf, soplex, astar

Workload5: libquantum*2, cactusADM, tonto, mcf, bzip2
Workload6: libquantum*3, gobmk, gcc, deal2, soplex

Workload7: libquantum*2, lbm, h264ref, namd

Workload8: omnetppp, libquantum*3, sjeng, leslie3d

Workload9: soplex, libquantum*3, gcc, bzip2, Xalan

Workload10: omnetpp, libquantum*4, mcf, soplex, astar

http://www.wix.com/templateslp/links
http://www.wix.com/templateslp/links
http://www.wix.com/templateslp/links
http://www.wix.com/templateslp/links
http://www.wix.com/templateslp/links
http://www.wix.com/templateslp/links

