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                                Abstract 
Many emerging applications from various domains often 
exhibit heterogeneous memory characteristics. When 
running in combination on parallel platforms, these 
applications present a daunting variety of workload 
behaviors that challenge the effectiveness of any memory 
allocation strategy. Prior partitioning-based or random 
memory allocation schemes typically manage only one level 
of the memory hierarchy and often target specific workloads.  

To handle diverse and dynamically changing memory and 
cache allocation needs, we augment existing “horizontal” 
cache/DRAM bank partitioning with vertical partitioning 
and explore the resulting multi-policy space. We study the 
performance of these policies for over 2000 workloads and 
correlate the results with application characteristics via a 
data mining approach. Based on this correlation we derive 
several practical memory allocation rules that we integrate 
into a unified multi-policy framework to guide resources 
partitioning and coalescing for dynamic and diverse multi-
programmed/threaded workloads. We implement our 
approach in Linux kernel 2.6.32 as a restructured page 
indexing system plus a series of kernel modules. Extensive 
experiments show that, in practice, our framework can 
select proper memory allocation policy and consistently 
outperforms the unmodified Linux kernel, achieving up to 
11% performance gains compared to prior techniques.  

1. Introduction 
Efficient management of shared memory resources is 
important for application performance and system 
throughput. However, most existing memory and cache 
management mechanisms used in commodity production 
parallel machines adopt generic address-interleaving or 
scheduling/partitioning approaches that are oblivious to the 
diverse memory utilization characteristics and diverging 
resources requirements in today’s heterogeneous 
environments. This often results in inter-program 
perturbation, resources thrashing, poor memory/cache 
utilization, and, consequently, degraded performance.  

Several recent solutions attempt to segregate applications 
with different memory resources requirements by 
horizontally partitioning either main memory (DRAM banks) 
[10,16,17,29] or cache [15,24,30,31,32] into exclusive slices. 
These approaches avoid interference for programs with 
small memory footprints but might hamper performance of 
larger workloads by effectively reducing capacity. 
Partitioning and other memory allocation optimizations at 
the OS level are more flexible, and it performs well in many 

cases. For instance, given a multi-threaded workload, 
randomly interleaving pages to distribute each thread’s 
accesses across different DRAM banks [18] could reduce 
row buffer conflicts, but does not address interference 
among applications in multi-programmed workloads. 
Therefore, it is desirable to design a memory management 
system that can choose appropriate allocation policies by 
distinguishing memory characteristics. To achieve this goal, 
simply integrating the best performing mechanisms is 
impractical as almost all state-of-the-art schemes requires 
expensive changes to memory controllers/allocators or 
cache hierarchies, not to mention the challenges in detecting 
and predicting the application requirements and conflicts.  
    To better meet the needs of diverse workloads and 
leverage the architecture advantages, we propose a software 
approach that simultaneously combines multiple allocation 
strategies at different levels of the memory hierarchy (e.g., 
DRAM bank level [10,16,17] and cache set level 
[8,15,26,31]). Enabling such vertical partitioning (through 
the DRAM banks and cache at the same time) creates a 
larger policy space from which the OS can choose. 
Additionally, we use random allocation when no 
partitioning method performs well. We integrate Horizontal 
partitioning, Vertical partitioning, and a Randomized paging 
policy (similar to Park et al.’s M3 [18]) to create HVR, a low 
overhead, unified memory allocator that we implement in 
the Linux kernel. HVR automatically selects component 
policies dynamically based on different memory usage 
scenarios detected by an online application classification 
module that characterizes memory/cache behaviors.    

To determine appropriate memory management policies 
and address conflicting allocation preferences, we perform 
more than 10,000 experiments for over 2000 workloads on 
production machines with mainstream processor and 
memory configurations. Based on a data mining approach to 
analyze our results, we generate a set of practical 
partitioning and coalescing rules together with a policy 
decision tree to help HVR with automatic policy selection, 
dynamic resources partitioning and coalescing. By 
combining these policies on the fly, HVR can handle 
diverse, complicated and dynamically changing memory 
allocation needs in daily computing and production 
environments where programs/jobs are launched and 
terminated arbitrarily. We implement HVR in around 3000 
lines of source code in Linux kernel 2.6.32. We summarize 
our contributions below: 
(1) Vertical partitioning (Section 3). Through a 
quantitative study we identify limitations of existing 
partitioning approaches. We leverage the overlapped bits 
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(O-bits) in the physical page address for indexing both 
DRAM banks and cache sets to partition memory hierarchy 
vertically, and achieve accumulated gains from multiple 
horizontal partitioning methods.  
(2) A multi-policy framework (Section 3). Based on O-
bits, we design an efficient, flexible and all-in-one 
framework (HVR) that supports vertical partitioning, 
horizontal partitioning and random allocation scheme. HVR 
requires no hardware changes and performs well for both 
multi-threaded and multi-programmed workloads. 
(3) A low-overhead, page-table-based cache-profiling 
module (Section 4). We develop an online module that 
dynamically captures and categorizes application cache 
utilization to assist appropriate memory allocation without 
offline profiling or expensive performance counters.  
(4) Data mining driven allocation rules (Section 5). By 
adopting a data mining approach on extensive experimental 
results of various policies and numerous workloads, we 
derive a set of partitioning and coalescing rules used to 
appropriately partition resources while allowing non-
interfering programs to live together for resource sharing.  
(5) Real implementation in Linux kernel (Section 6). We 
restructure the buddy system and rebuild the physical 
page index in Linux kernel 2.6.32 to support all the 
component policies and the partitioning/coalescing rules in 
HVR. Dynamic application classification is implemented as 
kernel modules. Our implementation adds around 3000 lines 
of source code into the Linux kernel source tree. 

 Our experiments on a real machine show that vertical 
partitioning outperforms prior techniques [15,16]. Based on 
the classification module and partitioning/coalescing rules 
(90% accuracy verified by experimental results), HVR 
brings consistent performance gains to the unmodified 
Linux kernel and outperforms prior utility-based software 
partitioning [15,16] by up to 11%. HVR also achieves 
benefits for handling dynamic workload changes in real 
production environments. 

2. Background  
2.1 Buddy Memory Allocation System  
Today’s Linux operating system adopts a buddy system to 
manage and allocate physical pages to various 
applications in a low overhead and high efficient manner 
[13,23]. The current buddy system maintains 11 free lists 
with orders ranging from 0 to 10. The free list with order R 
organizes pages as blocks and each block has 2R number of 
continuous pages. Upon a memory allocation request, the 
buddy system is responsible for identifying a free list with 
an appropriate order and selecting one block from the free 
list for allocation. One larger block with a higher order can 
be split into smaller blocks of lower orders when 
necessary. Buddy system aims to satisfy various memory 
requests from diverse applications as generally and 
efficiently as possible. To a considerable degree, the buddy 
system achieves the goal in the single-core era.  

 
Figure 1. Address mapping for cache and bank partitioning.  

2.2 Page-Coloring Based Memory Management 
Multicore architecture poses new system design and 
optimization challenges, particularly on memory allocations, 
since it allows all applications to share LLC (Last Level 
Cache) and DRAM banks, resulting in severe contention in 
many cases. Previous research efforts [12,29] show that 
contention can significantly degrade the overall system 
performance and many solutions have been proposed to 
mitigate the contention problems.   
    One of the most effective optimizations is the page-
coloring based software partitioning, which allows an OS 
kernel to leverage the underlying architecture information 
such as the physical address mapping of LLC and DRAM. 
With page-coloring, one can mitigate the contention 
problem [4,10,15,17,21,22,24,26] by modifying the kernel 
buddy system while avoiding expensive hardware changes 
to memory controllers or cache hierarchies. 

Conventionally, there are two page-coloring based 
partitioning techniques, namely the cache partitioning and 
DRAM bank partitioning. As shown in Figure 1, cache 
partitioning can be achieved by using the bits in the OS 
physical page address that denote LLC set index (LLC color 
bits) as color bits. When allocating a page for an application, 
OS can assign a physical page with a specific color so that 
the application can only access the cache sets with the 
assigned color. Recent studies [10,16,17] utilize page-
coloring to partition DRAM banks as there are also bits in 
the physical page address that denote DRAM bank address. 
The difference is that the bank color bits in physical page 
address might be distributed on some platforms. Figure 1 
illustrates bank partitioning using page-coloring. 

3 Memory Allocation Policies 
In this section we study a number of existing allocation 
approaches and introduce our new methods to expand the 
memory allocation policy space. Based on a performance 
analysis of these policies we identify several memory 
allocation challenges and opportunities, which will be 
discussed in the later sections.   
3.1 Horizontal and Vertical Partitioning 
Traditional partitioning policies such as those mentioned in 
Section 2.2 are horizontal in that they partition either cache 
or main memory (DRAM banks) in one dimension. With the 
page-coloring technique the horizontal partitioning can be 
implemented by selecting bank or cache indexing bits as 
colors  when  allocating  a  page. Our  detailed  architectural 



Figure 2. Address mapping from the view of OS and three 
categories of color bits on a typical multicore machine. 
 
study reveals that the coloring bits can be classified into 
three categories:  bank-only bits (B-bits), cache-only bits 
(C-bits) and overlapped bits (O-bits index both bank and 
cache in Figure 1). In particular, the O-bits enable a vertical 
partitioning (VP) that partitions both cache and memory 
banks, vertically through the memory hierarchy. Combining 
horizontal and vertical partitions forms a previously 
unstudied partitioning policy space. Assume, for example, 
there are L B-bits, M C-bits and N O-bits, we can use i B-
bits, j C-bits and k O-bits to generate a partitioning policy 
represented as (i,j,k), where 0 ≤ i ≤ L, 0 ≤ j ≤ M and 0 ≤ k ≤ 
N (value 0 is valid).  

 Figure 2 illustrates the three categories of coloring bits 
on a typical machine (Intel i7-860 with 8GB memory and 64 
banks, B-bits: 21~22; C-bits: 16~18; O-bits: 14~15. An 
arbitrary coloring bit distribution depends on specific 
cache/memory configuration and can be detected by the 
approach presented in [16,18]). Actually, The 13 bit denotes 
bank, LLC and also L2 cache index, but we will not use it in 
partitioning since we do not want L2 cache to be partitioned. 
Table 1 lists six representative policies derived by these 
coloring bits. Each policy partitions certain resources (i.e., 
cache, memory or both) to a different extent and thus 
performs best in a certain scenario. For example, A-VP uses 
the two O-bits to partition both LLC and memory banks into 
four colors (groups) thus it is suitable for applications with 
modest memory/cache demands as only one fourth of the 
LLC and DRAM banks can be used with one color assigned.  

3.2 Going Vertical? 
Prior efforts [8,10,15,16,17,26,29,30,31] demonstrate that 
horizontal partitioning on memory or LLC is effective in 
eliminating inter-program interference and improving 
performance. With vertical partitioning and, more generally, 
our partitioning policy space, one important question is 
whether the benefits from the horizontal memory and 
cache partitioning can be accumulated (i.e., should we go 
vertical in partitioning?).   

To answer the above questions, we investigate over 200 
random workloads composed of programs from SPECCPU 
2006 [1]. This experiment includes two steps. In the first 
step, for each workload we run multiple experiments to 
obtain the performance gains of that workload on horizontal 
partitioning. The performance improvements are compared 
against the unmodified Linux kernel as the baseline. All of 
the experimental results are reported in the four-
quadrant Cartesian plane in Figure 3. The horizontal axis 
and vertical axis represent the weighted speedup (see 
Section 7) improvements achieved through the Bank-only 
and Cache-only partitioning,  respectively.  Workloads  that 

Figure 3. Performance improvement of Cache- and Bank-Only 
partitioning for 214 workloads. Green dots: 4-programmed; Red 
dots: 8-programmed; Blue squares: A-VP friendly; Black triangles: 
B-VP friendly; Brown circles: C-VP friendly. Note that the metric 
of overall system performance is Weighted Speedup which is 
defined in Section 7.1.  
 

contain 4 or 8 programs are denoted as 4/8-programmed 
workloads. From Figure 3 we can see about half of the 
tested workloads fall into Quadrant I. For these workloads, 
both Cache-Only policy and Bank-Only policy bring certain 
levels of performance improvements. 
    In the second step, we randomly select tens of workloads 
in the Quadrant I and use A, B and C-VP on them. We find 
that these workloads (i.e., those highlighted by blue squares, 
black triangles and brown circles) achieve optimal 
performance with one of the VP policies, indicating that 
their performance benefits accumulate to a certain degree 
due to the vertical partitioning on both cache and main 
memory banks. Shown in Figure 3 Quadrant I, different 
symbols denote workloads with different properties. For 
example, blue squares represent A-VP friendly workloads, 
which achieve the best performance with A-VP policy.  

Quadrant IV contains workloads for which bank-only 
partitioning is beneficial while cache-only partitioning is 
detrimental. We study workloads in this quadrant and find 
that the  performance benefits achieved by bank partitioning  

Policy  Coloring Bits Description Target Cores 
 

Cache-Only C-bits {16~18} LLC à 8 groups 4/8-core 
Bank-Only B-bits {21~22} Banks à 4 groups 4-core 

Bank-Only B-bits {21~22} 
O-bits {15} 

LLC à 2 groups 
Banks à 8 groups 8-core 

A-VP O-bits {14~15} LLC à 4 groups 
Banks à 4 groups 4-core 

B-VP B-bits {22} + 
O-bits {14~15} 

LLC à 4 groups 
Banks à 8 groups 8-core 

C-VP C-bits {16} +  
O-bits {14~15} 

LLC à 8 groups 
Banks à 4 groups 8-core 

Table 1. Six representative partitioning policies. 
 

Ⅱ  Ⅰ  

Ⅲ  Ⅳ  



 
Figure 4. Normalized performance slowdown with different 
LLC capacity. 

are largely offset by the side effect of cache partitioning (VP 
is not useful). Thus, for workloads in this quadrant, it is 
desirable to disable cache partitioning and enable bank 
partitioning. There are few workloads in Quadrant II and 
Quadrant III, indicating that bank-only partitioning does not 
bring negative impact under most of the cases.  

3.3 Random-Interleaved Allocation (Multi-threaded) 
Although the above analysis demonstrates that various 
partitioning policies achieve different levels of performance 
gains, there are cases where none of the partitioning-based 
memory allocation is preferred. One important scenario is 
that the running workload exhibits heavy data sharing, 
which defeats the purpose of any resource partitioning 
mechanism [16]. For example, multi-threaded workloads 
typically share considerable amount of data and thus 
multiple threads access the same memory or cache bank 
regardless whether the memory/cache is partitioned or not.  
   To optimize multi-threaded workloads, the recently 
proposed M3 [18] enforces a random-interleaved page 
allocation to avoid hot spots and row buffer conflicts on 
heavily shared banks. We conducted experiments and 
verified that the random memory allocator outperforms 
partitioning-based approaches for multi-threaded workloads. 
Therefore, to handle multi-threaded workloads, we integrate 
a randomized page-interleaving scheme to achieve similar 
effects of M3 in our framework (see Section 6.2).  

An obvious conclusion can be drawn from the above 
presented quantitative study is that the effectiveness of a 
memory allocation policy depends on specific application 
characteristics, in particular the cache requirements. In 
practice, a workload could contain several simultaneously 
running applications with an arbitrary combination of 
diverse characteristics, making the task of determining an 
appropriate memory allocation challenging.   

4. Application Classification  
Determining an advantageous memory allocation policy 
requires an accurate prediction of a running workload’s 
memory/cache characteristic and its reaction on each 
allocation policy. Based on our experiments we find that 

most multi-programmed workloads are not negatively 
affected by a modest bank-partitioning (<= 8 groups) 
scheme. By contrast, the performance of cache partitioning 
exhibits great variations due to different cache utilization 
behaviors of the running workloads (in Figure 3).  
    In order to verify the potential impact of cache utilization 
characteristics on cache partitioning policies, we collect 
performance slowdowns of various applications as the cache 
quota is reduced from 8/8 (entire cache is used) to 1/8. Each 
application is executed eight times and each time a different 
amount of LLC is assigned by the page-coloring based 
cache partitioning. Based on the results we classify 
applications’ caching behaviors into four categories: Core 
Cache Fitting (CCF), LLC High (LLCH), LLC Middle 
(LLCM) and LLC Thrashing (LLCT). Figure 4 reports the 
classification of various benchmarks in the SPEC2006 
benchmark suite [1]. CCF applications (denoted as green 
curves), such as hmmer and namd, do not degrade 
significantly when using fewer LLC resources since their 
working set sizes are small enough to fit into the L1 and L2 
per-core private caches. LLCT applications (black curves), 
such as libquantum, are also insensitive to cache quotas, but 
due to cache thrashing behavior rather than small working 
set sizes. LLCH applications (red curves) such as mcf suffer 
the worst performance degradations from reduced cache 
quotas due to their resource hungry characteristics. 
Compared to LLCH, LLCM (blue curves) applications use 
fewer cache resource, thus the slowdowns are not as much 
as LLCH applications. For example, gcc and bzip2 are 
LLCM as they suffer no significant degradation when cache 
decreases from 8/8 to 4/8. However, a sharp performance 
drop is observed when cache quota drops below 3/8.     

4.1 Dynamic Classification 
The static profiling approach used to generate Figure 4 
requires multiple experiments for each application running 
and does not capture dynamically changing behavior. To 
predict cache requirement on the fly we explore the synergy 
between application page accesses and cache utilization.  
The key insight is that the number of hot pages (active 
pages used in a particular time interval and can be identified 
by the access bit [26,27] in the page table entry (PTE)) can 
reflect an application’s LLC demand in many cases due to 
the DRAM row-buffer locality [19]. Figure 5 shows the 
correlation between number of hot pages and cache 
demands for several benchmarks. Taking hmmer as an 
example, the number of hot pages (denoted as red box) is 
extremely low (at most 19 hot pages over the entire 
sampling period). This indicates that a maximum amount of 
19×4KB (4KB per page) cache resource is needed during 
the sampling period. Additionally, we test all benchmarks in 
SPECCPU 2006 in our experiments, but we only show 
several of them in Figure 5 due to the space problem. 

To this end, a simple estimation of LLC utilization can be 
achieved by dividing the number of hot pages (NHP) by the 
number  of  pages  the  LLC can accommodate (NPC).  This  



 
 
metric  (NHP/NPC)  represents   the   percentage   of   LLC 
occupied by hot pages and is shown as the cache fitting 
curve in Figure 5 (vertical axis on the right side of each sub-
figure). In the case of hmmer, less than 1/8 of the LLC is 
required, indicating a CCF classification. A sharp 
comparison is mcf, which is classified as LLCH since it has 
large amount of hot pages (1143 to 15813) that cannot be 
accommodated in most modern computers’ LLC (e.g., 8M). 
For an LLCM application (e.g., bzip2), the number of hot 
pages falls between that of the LLCH and CCF application 
and the required LLC quota typically varies between 1/4 and 
1/2.  For an application that touches a large number of pages 
but exhibits very poor reference locality (i.e., some CCF 
applications such as sjeng visit many hot page but only a 
small amount of them are heavily accessed and benefit from 
being cached), using only the number of hot pages will 
mislead the above simple method to a wrong classification 
of LLCM or LLCH. To address this issue, we define 
weighted page distribution (WPD), a metric used to reflect 
page reference locality and can be obtained by per-page 
access counters (detailed in Section 4.2). Based on the 
above analyses, we devise an online application 
classification algorithm detailed next.  

4.2 Classification Algorithm  
Figure 6 illustrates the classification process where two 
tasks, JOB1 and JOB2, are launched in parallel. JOB1 is 
responsible for collecting the number of hot pages. Its 
sampling time interval is 3s in our system and the sampling 
duration in each interval is 10μs. Our experiments show that 
10μs is enough to collect sufficient information while incurs 
negligible overhead. During each sampling JOB1 first clears 
__access_bit by the pte_mkold() kernel function, and then 
collects the number of hot pages (__access_bit set to 1) at 
the end of the sampling. Note that hot page numbers are 
averaged over several sampling intervals to avoid temporary 
spikes and reflect stable program behaviors.   
    JOB2 uses an array of page access counters to record the 
number of accesses for each page. Since the OS itself does 
not frequently reset the  __access_bit,  once set by the CPU, 
 

 
 
JOB2 employs a loop to periodically clear __access_bit and 
collects the access information during this period. JOB2 
incurs slightly more overhead than JOB1, but the amortized 
overhead over the sampling time window (also 3s) is not 
high since it switches to the sleep mode after iterating 200 
times (the time cost is far less than 3s). Based on the page 
access counters, JOB2 records the numbers of pages by 
grouping the counter values into five ranges: VH [150, 200], 
H [100, 150], M [64, 100], L [10, 64] and VL [1, 10]. For 
example, M denotes the number of pages with a counter 
value large than or equal to 64 but smaller than 100. Based 
on the above information, the WPD is computed as: 

𝑊𝑃𝐷 =  
2×VH + 1.5×H + 1×M + 0.5×L + 0.1×VL

𝑎𝑙𝑙_𝑢𝑠𝑒𝑑_𝑝𝑎𝑔𝑒𝑠_𝑛𝑢𝑚
 , 

where all_used_pages_num is the total number of pages 
accessed during a JOB2’s sampling period (200 iterations). 
Moreover, we find that the total number of pages touched by 
an LLCT application (e.g., libquantum in Figure 5) does not 
show a great variation (<4% changes) during different 
execution time windows (i.e., after 200 iteration in every 3s) 
and it often generates more hot pages due to the memory 
intensive feature compared with CCF, making it easily to be 
identified. Based on the WPD metric to reflect reference 
locality, the hot page number and a series of thresholds, we 
devise a classification algorithm shown in Figure 6. The 
values of ccf_threshold, hot_freq_threshold and 
llch_threshold are 100, 10% and 1000, respectively.  
    The constants in our algorithm (i.e., sampling interval, 
weighted, thresholds, and etc.) are empirical values based on 
the analyses of all programs from SPECCPU 2006 with 
diverse memory features and a wide range of workloads 
combinations. Thus, we conclude that our approach is cost-
effective, robust and may work well in many real cases. 
These values can be adjusted as necessary in the conditions 
of extreme environment changes. 

5. Handling Multiplicity by Learning Rules  
The application classification information obtained from the 
mechanism introduced above only reflects the partitioning 
preference  for  a  single  application,  but  the  challenge  of  

                                                  Figure 5.  Applications’ hot pages and their demands for LLC capacity.  



 
Figure 6. Online application classification algorithm. AVG(x) 
computes the average of x in three consecutive intervals and 
DIFF(x) returns the absolute value of the difference of x between 
two adjacent intervals. 

 

selecting an appropriate scheme for co-running applications 
with an arbitrary combination of memory demands remains 
unaddressed. To tackle this challenge, we adopt a data 
mining approach to quantitatively study the impacts of 
various memory allocation schemes on over 2000 workloads. 
We summarize the outcome as a set of partitioning rules 
and coalescing rules, which can be used to handle diverse 
memory allocation needs for simultaneously running 
applications in multicore systems. 

5.1 Partitioning Rules 
Given a multi-programmed or multi-threaded workload, our 
first step is to select an appropriate memory allocation 
policy. To achieve this we collect a large amount of 
performance data from more than 10,000 experiments over 
2000 workloads. For each workload, we use the framework 
introduced in Section 4 to obtain a classification vector, a 
notation to represent workload composition. For example, 
the classification vector of the workload {libquantum, mcf, 
bzip2, hmmer} is denoted as {<lib, LLCT>,<mcf, LLCH>, 
<bzip2, LLCM>, <hmmer, CCF>}. We run each workload 
with different policies and record the results as <cache-only: 
x%>, <bank-only: y%>, <A-VP: z%>, etc., where x%, y% 
and z% are performance improvements achieved by the 
corresponding policies. Based on the correlation between 
the classification vectors and the performance gains on 
different policies, we draw several interesting conclusions. 
First, almost all workloads that are combinations of LLCT 
and other type(s) of applications perform best on C-VP or 
A-VP. Second, a dominating percentage of workloads 
containing LLCH but not LLCT perform best on bank-only 
partitioning. Third, most workloads with LLCM but no 
LLCT or LLCH applications achieve best performance 
results with a modest cache partitioning scheme such as A-
VP and B-VP. We summarize the above conclusions by the 
following three rules:  
Rule-1: Workloads containing LLCT and other applications 
(LLCH, LLCM, CCF) should use C-VP or A-VP (37.1% 
support, 94.4% confidence1). 

 
Figure 7. Memory allocation policy decision tree (PDT) 

 
Rule-2: Bank-only partitioning should be used for 
workloads with LLCH and LLCM applications but without 
LLCT applications (34.3% support, 83.3% confidence). 
Rule-3: A-/B-VP should be used for 4-/8-programmed 
workloads with LLCM but no LLCT or LLCH applications 
(23.8% support, 87.9% confidence). 
   The above analyses and rules also imply a priority in 
considering a memory allocation policy: LLCT > LLCH > 
LLCM > CCF. This ordering indicates that LLCT is the 
most “assaulting” type in that it brings negative impact for 
virtually all the other types of applications while CCF is the 
most susceptible classification and applications of this type 
hardly affect other applications’ performance. 
    These results can be also explained by architecture 
knowledge. In particular, Rule-1 is likely to perform well on 
any LRU (least recently used)-based caches since LLCT 
applications are not well handled by the LRU policy [9] as 
they waste other applications’ resource without being 
benefited. Rule-2 and Rule-3 can be also explained from the 
perspective of resource utilization.  
    For multi-threaded workloads, recent research [16] shows 
that bank partitioning only achieves slight performance gain. 
Additionally, Park et al. [18] argues that a random page-
interleaved allocation scheme outperforms partitioning 
schemes. We conducted experiments for multi-threaded (see 
Section 7) workloads and verified their conclusion. Thus, 
we add another rule for multi-threaded workloads: 
Rule-4: Multi-threaded workloads should use random page 
allocation policy.   

Based on the four rules and their priorities relative to each 
other, we generate a memory management policy decision 
tree (PDT) shown in Figure 7. The PDT is useful for 
choosing appropriate policies for diverse workloads.  

5.2 Coalescing Rules 
Despite the advantage in eliminating interference, a pure 
partitioning based approach is not always preferable since it 
limits the cache capacity and can harm the performance for 
resource hungry applications (e.g., LLCH).  To arrive at a 
middle ground between partitioning and sharing, we  extend  

 
1Confidence and support are terminologies in data mining. In our work 
support is defined as the proportion of workloads that contain the 
specific types of applications in a rule; confidence indicates the 
accuracy of that rule. 



 
Figure 8. Free page list organization of Sub-system A in buddy 
system. Sub-system A organizes pages by 2 O-bits (bit 14,15) and 
one C-bit (bit 16). Thus, it contains 8 colors (000~111), and can 
facilitate searching pages for A/C-VP policies. 

the partitioning decision tree with several coalescing rules 
that can be used to merge the partitioned resource quotas 
among certain types of applications.  

We collect performance data of cache-only partitioning 
and represent the result for each workload as <(n×LLCT, 
m×LLCH, p×LLCM, q×CCF), x%>, where n, m, p, q are the 
numbers of applications of a certain type and x% is the 
performance gain achieved by the cache partitioning. Based 
on the results, we find that for almost all workloads that 
contain LLCH or LLCM but no LLCT applications (n=0, 
m+p>0) cache partitioning always hurts performance (x% < 
0). Additionally, for the workloads containing only LLCT 
applications (m=p=q=0, n>1), the improvement is quite 
modest (x%<1%) and for CCF dominant workloads 
(n=m=p=0, q>1) no obvious impacts are observed. Further, 
we run multiple LLCT applications (lib.) together on 1/8 
LLC capacity and find that the overall performance is 
similar to the cases where they are partitioned or share the 
entire cache. The same results are observed for CCF 
workloads. Thus, we derive the following coalescing rules: 
Rule-5:  LLCH and LLCM applications should be coalesced 
together to share the partitioned colors and cache quota 
(support: 39.5%, confidence: 87.2%). 
Rule-6: LLCT and CCF applications should be coalesced 
respectively to share the partitioned colors and small cache 
quota (support: 7.8%, confidence: 90.5%). 

The above coalescing rules are important complements to 
the partitioning rules for providing larger aggregate cache 
capacity and reducing misses under a partitioned cache. 
Coalescing might incur slightly higher bank contention 
among applications, but the benefits exceed the negative 
impact and HVR still performs well. 

5.3 Combining Partitioning and Coalescing 
In real production environments, applications can be 
launched and terminated arbitrarily. This dynamically 
changing workload composition can defeat any 
predetermined policy selection method. Combining and 
switching between partitioning and coalescing policies is 
particularly useful for handling dynamic changes in the 
running workloads. For example, several partitioned cache 
quotas under C-VP can be dynamically coalesced to form a 
larger  aggregate  quota  for  accommodating  multiple non- 

 
Figure 9. Free page list organization of Sub-system B. It 
organizes pages by bank bits 13, 14, 15, 21 and 22, and contains 32 
colors, facilitating searching pages for B-VP policies, bank-level 
random or round-robin interleaving scheme. 

conflicting applications launched in an arbitrary order (see 
Rule-5 and Rule-6). On the other hand, a coalesced space 
can be partitioned if an additional partition is needed when 
an assaulting application (e.g., LLCT) is launched.  

6. Supporting HVR in Linux Kernel   
The previously presented classification framework is 
implemented as kernel modules in the Linux kernel 2.6.32 
in about 700 lines of source code. This section details our 
modification to the kernel data structures and paging 
algorithm to support the previously discussed policies and 
the partitioning/coalescing rules in a unified system. We 
implement HVR in roughly 3000 lines of source code over 
the existing kernel source tree. We use a page-coloring 
based scheme to re-organize all free physical pages. Our 
modified kernel maintains two page indexing systems:  sub-
system A and sub-system B. Sub-system A provides support 
for A/C-VP while sub-system B supports bank-only, B-VP 
and the random-interleaved page allocation policy. Note that 
the same page typically has different colors in different sub-
systems. Section 6.3 introduces how sub-system A and B 
live and work together in our modified kernel. Based on the 
two sub-systems, we develop a hash-based searching 
algorithm (see Pseudocode 1) to allocate a page in O(1) time. 

6.1 Page Indexing Sub-system A 
The indexing sub-system A is illustrated in Figure 8. As 
Figure 8 shows, the Linux kernel buddy system maintains 
free physical pages in orders of blocks from 0 to 10. Each 
block in order-n contains 2n continuous pages. The three bits 
used in sub-system A form a set of 8 colors (000~111), each 
of which has a free page list in our modified kernel.  

In order-0 (upper left corner of Figure 8), each block is an 
individual page and the block list under a particular color is 
a set of pages of that color. For example, the block list under 
the green color in order-0 contains any free and non-
continuous page with the three coloring bits being 000.  
Order-1 and order-2 are similar to order-0 except that two or 
four pages in  a block are continuous.  Each block in order-3  



Figure 10. An example of free page list expanding in sub-
system A and B 

has 8 continuous pages and spans two colors since there is 
one coloring bit (bit 14) within the offset of a block in 
order-3. Similarly, each block in order-4 spans two coloring 
bits (bit 14~15) and thus has four colors (16 pages), as 
depicted in Figure 8. Since all the coloring bits are within a 
block offset starting from order-5, blocks of order-5 and 
above have in-block repeated 8-color (32 pages) patterns, as 
shown on the right of Figure 8.   

Sub-system A supports C-VP since it uses the same bits 
(14~16) to organize the pages into different colors. It also 
supports A-VP. From the perspective of A-VP, the bit 16 is 
not a coloring bit thus the buddy system views two colors in 
sub-system A with the same lower two bits to be the same 
color (e.g., 111 and 011). The most significant coloring bit 
(bit 16) is simply not considered when choosing a color in 
the sub-system A page indexing structure. CASE 1 in 
Pseudocode 1 shows how to select a page of a given color 
from sub-system A. 

6.2 Page Indexing Sub-system B 
Sub-system B, shown in Figure 9, uses five bits (13~15, 21, 
22), or 32 colors, to provides support for B-VP and bank-
only partitioning, since all these bits denote the DRAM 
bank index. Within order-1, each block contains two 
consecutive pages of the same color (the addresses of these 
two pages only differ in bit 12). From order-2 to order-9 
each block contains pages of more than one color since 
continuous pages in these orders spread across multiple 
colors. Order-10 is special in that each block spans 10 bits 
of the page address (bits 12~21) and contains 1024 
continuous pages. Thus, all the binary combinations of the 
coloring bits 13, 14 and 15 form an 8-color 16-page group, 
which alternate as the upper non-coloring bits (bits 16~20) 
vary (220-16+1 = 32 groups).  The bit 21 is also a coloring bit, 
and this repeats the pattern of the 8-color 16-page 
alternation with a different 8-color set.  Thus, each block in 
order-10 has a pattern of 2 × 32 8-color 16-page groups. The 
bit 22, the lowest block address in order-10 and also a 
coloring bit, repeats the above 2 × 32 group pattern with an 
entirely different 16-color set in a different block. To choose 
a page with a particular color in a certain order, we use the 
algorithm shown in CASE 2 in Pseudocode 1. 

In particular, in sub-system B, the random-interleaved 
page allocation for multi-threaded workloads can be easily 
achieved by randomly selecting pages in the order-0 free list.  

 
Pseudocode 1: Hashing algorithm for selecting pages 
Input: (1) order; (2) target_color Output: one page of target color 
BEGIN 
/*CASE 1: Physical pages organized based on bits 14~16*/ 
    IF using 14,15,16 bits THEN 
        SWITCH (order) 

case 0~2 3 4 5~10 
colors_per_block = 1 2 4 8 

        END SWITCH 
   block_color = (target_color / colors_per_block) × colors_per_block; 
   page_index = (target_color - block_color) × 4; 
END IF 
 

/*CASE 2: Physical pages organized based on bits 13~ 15, 21~22*/ 
IF using 13, 14, 15, 21, 22 THEN 
    SWITCH (order) 

case 0~1 2 3 4~9 10 
colors_per_block = 1 2 4 8 16 

         END SWITCH 
    block_color = (target_color / colors_per_block) × colors_per_block; 
    IF order is 10 AND the color bits are x1xxx THEN //The 4th bit is 1  
        page_index = (target_color - block_color - 8) × 2 + (1 << 9);   
        // As shown in Figure 9: 32 blocks × 8 colors = 1024 blocks 
        ELSE  page_index = (target_color - block_color) × 2; 
    END IF 

    END IF  
    Expand color block (page_index, order) 

// physical pages represented by "struct page" are in page[] array  
// in Linux kernel.  
RETURN page[page_index] and remove this page from free list. 

END 
* target_color is the color of the requested page. 
* block_color is the color of the first page in a block. 
* colors_per_block is the number of colors in a block. 

Moreover, similar effect in M3 [18] can be also achieved by 
allocating physical pages with the 32 colors (00000~11111) 
in a round-robin fashion and interleaving the required pages 
evenly across all banks to reduce potential bank conflicts. 
Therefore, our framework, HVR, is able to support both 
multi-programmed and multi-threaded workloads. 

6.3 Consistency of Sub-systems 
When a page is requested and removed from a free block list 
in one of the two sub-systems, the corresponding entry in 
the other sub-system should also be removed to keep the 
consistency between the two sub-systems.   

Given a color, the speed of searching its corresponding 
free block list is vital and the operation should be low-
overhead. By default, a free page request is serviced by 
order-0 if the free block lists under the requested color in 
order-0 is not empty. When order-0 cannot satisfy a request, 
block lists of higher orders are searched. In this scenario, 
continuous pages are broken into lower order blocks (fewer 
continuous pages), which will be inserted into the free block 
lists of appropriate orders. This process is known as expand 
in the kernel, shown in Figure 10.  

Suppose a thread in sub-system B requires a page of gray 
color and there is no gray page in order-0, 1 and 2, as shown 
in Figure 10 (1). The system has to expand a large block of 
8 consecutive pages in order-3 into one order-2 block (green 
and orange),  one  order-1  block  (yellow)  and  one order-0  



 (a) 4-programmed workloads (A-VP performs best) . 

 
(b) 8-programmed workloads (B-VP performs best). 

 
(c) 8-programmed workloads (C-VP performs best).  

 
 
block (gray), in addition to the gray page to service the 
request. This is illustrated in Figure 10 (2). Since the 
physical page needs to be removed in the other sub-system, 
the expand process is triggered for sub-system A to remove 
a red page in order-3, as shown in Figure 10 (2’). The red 
page in sub-system A and the gray page in sub-system B are 
associated with the same physical page. The following steps 
(3) ~ (5) and (3’) ~ (5’) in Figure 10 show similar expand 
processes as different pages are requested and how the two 
sub-systems keep in sync with each other. 

6.4 Implementation Complexity 
Although the entire mechanism seems complicated, it is 
relatively simple in implementation and efficient in 
performance. In memory management module in Linux 
kernel, each physical page is represented by a page  
structure  and  linked  into the  buddy system by a list_head 
structure based on the order member in the page structure. 
We add two additional list_head structures, lruA and lruB, 
to track locations of pages in sub-system A and sub-system 
B, respectively. Every page structure    is   linked   to   sub-
system  A   by   lruA  and   to sub-system B by lruB. Each 
list_head item in the two sub-systems contains a pointer to 
each other so that the two sub- systems can be synchronized 
in O(1) time. The color(s) assigned to a particular process is 
maintained by a color mask added to the task_struct 
structure and used in the O(1) hash searching (Pseudocode 1) 
for page allocation.  

 
Figure 12. Performance of different policies as bandwidth 
changes (the baseline is the unmodified Linux kernel). 

6.5 Coalescing and Page Migration 
The coalescing rules (Section 5.2) can be implemented by 
assigning the same color mask to multiple applications (e.g., 
two CCF applications). When two or more applications are 
coalesced, the color masks in their task_struct are identical 
so that they share the same cache memory quota. 
    A common issue associated with coalescing is that page 
migration typically needs to be involved, which is expensive, 
especially when invoked frequently. Migration is also 
needed for application re-classification. To mitigate page 
migration overhead we always enable bank-only 
partitioning at the very beginning. Doing so rarely brings 
negative impact (see Section 3.2) and avoids page 
migrations due to a transition from a non-bank partitioning 
to a bank partitioning policy. Our experiments also show 
that by enabling bank-only partitioning as a baseline, 
migrations can be greatly reduced upon transitions between 
any two policies (with bank partitioning). Moreover, we use 
lazy migration [15] in our framework to avoid unnecessary 
migration. Doing these in practice greatly reduces the 
number of pages need to be migrated (see Figure 16), and 
thus reduce the overhead.  

7. Evaluations 
7.1 Experimental Methodology 
Our experimental machine has a quad-core eight-thread 
2.8GHz Intel i7-860 processor with 8MB 16-way LLC and 
8GB 64-bank DDR3 main memory. The machine runs 
CentOS Linux 5.4 with the kernel 2.6.32. We use SPEC 
CPU2006 suite [1] for multi-programmed workloads and 
PARSEC benchmark suite [2] for multi-threaded workloads. 
All programs are compiled by gcc 4.4.3 with the -O3 
optimizations. Similar to previous work, we use weighted 
speedup [12] (WS) to measure system performance and 
maximum slowdown (MS) [12] for fairness:  
 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑆𝑝𝑒𝑒𝑑𝑢𝑝 (𝑊𝑆) =
𝑅𝑢𝑛𝑡𝑖𝑚𝑒!"#$%
𝑅𝑢𝑛𝑡𝑖𝑚𝑒!"#$!!!"

 

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑆𝑙𝑜𝑤𝑑𝑜𝑤𝑛 (𝑀𝑆) = 𝑀𝑎𝑥
𝑅𝑢𝑛𝑡𝑖𝑚𝑒!"#$!!!"
𝑅𝑢𝑛𝑡𝑖𝑚𝑒!"#$%

 

Figure 11. Performance gains of A/B/C-VP.  



 
Figure 13. Performance improvements of different schemes. 

 
We compare several memory allocation schemes including 
the unmodified paging system in the Linux kernel, utility-
based partitioning [15], DRAM bank partitioning [16], 
random allocation [18] and our proposed HVR system.  

7.2 Impact of VP Policies  
Figure 11 shows that for workloads that benefit from cache-
only and bank-only partitioning (50 workloads in Quadrant I 
of Figure 3), VP can accumulate the performance gains. For 
these workloads, all A-/B-/C-VP achieve the optimal 
performance. For instance, A-VP can achieve up to 16.7% 
improvement over the baseline system, while 5.9% and 11.7% 
over the cache-only and bank-only partitioning, respectively. 
We also try the random-interleaved page allocation for these 
multi-programmed workloads, and it performs worse than 
the partitioning policies. Figure 12 summarizes the 
performance and fairness improvements of various policies 
based on an average of workloads in our experiments. To 
demonstrate that the proposed scheme performs robustly 
under different memory bandwidth, we change the memory 
frequency from 1333 to 800MHz. Figure 12 illustrates that 
on average all the three vertical partitioning policies 
outperform the horizontal cache-only or bank-only 
partitioning schemes. Particularly, A-VP achieves a nearly 6% 
improvement over the cache-only partitioning and a 5% 
gain over the bank-only partitioning. As bandwidth 
decreases, the contention becomes more severe and the three 
vertical policies can bring even larger improvements. 
Therefore, we can draw conclusion that vertical partitioning 
brings additional benefits over horizontal partitioning and is 
a promising memory management mechanism for future 
multicore systems with increasing bandwidth pressure.  

7.3 Overall Performance  
Section 7.2 shows that using the proposed VP policies can 
bring performance gains over the unmodified kernel 
memory allocation and prior schemes. This section reports 
the effectiveness of HVR framework, which utilizes these 
VP policies more flexibly based on the application 
classification, partitioning and coalescing rules, to handle 
diverse and dynamically changing workload characteristics 
and behaviors in daily computing environments.     

 
          Figure 14. Performance of multi-threaded workloads. 
7.3.1 Dynamic Policy Selection 
Our HVR framework can automatically select appropriate 
memory allocation policies by collecting applications’ 
characteristics and searching a policy in the policy decision 
tree. To demonstrate the superiority of HVR over the static 
partitioning and prior utility-based partitioning [15] 
approach we compare three mechanisms with the baseline 
system. Static vertical partitioning (SVP) adopts A-VP for 
4-programmed workloads and B/C-VP for 8-programmed 
workloads. Utility-based VP (UVP) dynamically adjusts 
cache partitioning based on cache misses monitored through 
performance counters. Figure 13 reports the performance for 
the three schemes over 50 randomly generated workloads 
sorted by their performance improvements achieved by SVP. 
In region 1, both SVP and UVP achieve negative 
performance gain (up to -5.0%) over the baseline. In 
contrast, HVR improves performance by up to 6.1% over 
the baseline and 11% over SVP and UVP. A careful 
analysis reveals that workloads in region 1 are primarily 
LLCH dominate workloads, for which the cache partitioning 
is detrimental. Thus, SVP and UVP policies are not suited 
for these workloads. HVR achieves gains by automatically 
identifying workload characteristics and selecting the bank-
only partitioning for these workloads. 

In region 2, most workloads are 8-programmed ones with 
LLCT applications. HVR outperforms SVP and UVP due to 
resource coalescing. For instance, the workload 22’ contains 
5 LLCT, 2 LLCH and 1 LLCM applications. HVR maps all 
LLCT applications to 1/8 cache, thus the rest 7/8 cache 
quotas are shared by LLCM and LLCH applications, 
contributing to the improvement of system performance. 

In region 3, in most cases, HVR also outperforms other 
two approaches, since HVR is capable of selecting proper 
VP policies and using coalescing rules. But for some 
workloads, SVP  (Static VP) performs slightly better (0.4% 
better than HVR on average). By looking into workloads in 
this region we find a high percentage of A/B-VP friendly 
workloads containing multiple LLCM applications. Since an 
LLCM application requires modest cache capacity and 
typically maintains a steady rate of cache utilization, the 
SVP avoids dynamic overhead as it determines the 
partitioning policy only once at the very beginning by 
offline profiling. By contrast, dynamic utility-based 
approaches incur non-negligible overhead [15,26] that may 
offset the partitioning gains due to expensive page 
migrations  induced  by  page  re-coloring  and  performance  



 
Figure 15. Real-time performance of HVR framework. 

counter penalty. But, fortunately, HVR avoids offline 
profiling and will not incur significant overhead due to the 
page-table-based lightweight online profiling and the stable 
classification approach. More details about overhead are 
discussed in Section 7.4.  
    As previously mentioned, performance benefits can be 
achieved for multi-threaded workloads through adopting a 
random-interleaved page allocation approach. In Figure 14 
our experimental results show that the random-interleaved 
page allocation policy outperforms B/C-VP policies for 
various 8-threaded workloads. HVR supports random-
interleaved page allocation (see Section 5, Section 6.2, and 
Figure 7), which is automatically selected for multi-threaded 
workload based on the policy decision tree.  
7.3.2 Performance for real-time Changing Workloads  
Figure 15 reports real-time performance captured through 
Intel processor’s IPC performance counters for cache-
partitioning, bank-partitioning and HVR. During the entire 
testing span we inject applications of various kinds at 
different times. In the meantime, previously launched    
application may terminate upon completion. From the figure 
we can see the performance of cache partitioning fluctuates 
between 6% and -3%. At sampling time points 5,6, 9, 11, 26, 
27 and 28 the performance of cache partitioning drops 
below 0. This is because at these points LLCH applications 
are launched and the performance degrades due to limited 
cache resources. HVR avoids this degradation by 
identifying these LLCH applications and then coalescing 
resources for them. At time 16, HVR achieves peak IPC 
performance improvement. This is the point where LLCT, 
LLCH, LLCM and CCF applications are all running and 
they are appropriately segregated to eliminate perturbation 
while some of them are shared to use larger amount of 
resources.  
    Compared to HVR, bank-only and cache-only 
partitioning approaches achieve modest gains (5% and 7% 
worse than HVR, respectively) due to the inability of 
selecting policies and coalescing resources dynamically. 
Note that bank-only partitioning achieves relatively stable 
performance over time and this trend is consistent with our 
conclusion in Section 3 (see Figure 3). 

 
Figure 16. Number of page migration operations. 

7.4 Overhead and Discussion 
Overhead of HVR comes from the following three sources: 
(1). Page table sampling of JOB1 and JOB2 in the workload 
classification process. The costs of page table traversal 
depend on application’s memory footprint. In our 
experiments, the time for page table traversal ranges from 
5µs (povray) to 4.46ms (mcf). Thus, the amortized overhead 
of JOB1 and JOB2 are negligible. Moreover, JOB2’s 
sampling interval grows with an increasing step once it 
collects sufficient information to complete the initial 
classification process, and thus its overhead is further 
reduced for long running workloads. In the worst case, 
JOB2 only brings 0.6% overhead. For workloads with 
extremely large memory footprint, a random sampling can 
be adopted for a tradeoff between the sampling overhead 
and classification accuracy.  
(2). The page indexing in the modified buddy system. As 
our page searching routine can allocate a page in O(1) time 
and the synchronization between the two sub-systems is also 
highly efficient, our modified kernel does not bring obvious 
overheads (< 0.3% on average) during page allocation.  
(3). Page migrations caused by re-coloring in dynamic 
policy adjustment. Migrating a 4KB page costs around 3μs 
on our platform. Fortunately, our approach does not incur 
too many page migrations because it relies on stable 
classification information that typically changes only when 
an application starts or terminates. In our experiments, an 
extreme case requires up to 400MB (100,000 pages) to be 
migrated, and the time cost is around 30s. However, the 
entire workload runs for more than 30 minutes and thus the 
overhead is 1.7% at most. Moreover, since our mechanism 
uses the lazy page migration [15] that only migrates a page 
when necessary, the average overhead is less than 0.8%. 
Figure 16 shows that under the extreme case our mechanism 
migrates fewer pages than the utility-based approach, in 
which the number of migrated pages fluctuate over time and 
incurs higher migration overhead in practice. 

8. Related Work 
There is a large body of related work on cache and memory 
allocation and partitioning. At the main memory level, 
Prashanth et al. [29] proposes DRAM channel partitioning 
that requires hardware and system modifications to 
segregate data from different threads into different channels 
to eliminate interference. Park et al. [18] adopt a random 
allocation algorithm to scatter  allocated pages to multiple 
banks to avoid conflicts for multithreaded workloads. Liu et 
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al. [16] use page-coloring to partition DRAM banks to avoid 
contention of multiple programs. Kaseridis et al. [11] 
propose bandwidth-aware memory sub-system management 
for avoiding resource contention. Various approaches are 
also proposed to manage LLC [5,8,14,15,20,31,32,33,34]. 
In particular, Qureshi et al. [32] design a utility-based cache 
partitioning scheme that allocates appropriate cache 
resources based on application miss rate monitored through 
dedicated hardware. More recently, cache partitioning is 
also adopted in heterogeneous GPU-CPU architectures to 
promote fair resource sharing among CPU and GPU 
applications [30], which exhibit drastically different 
memory access characteristics. Other efforts 
[3,9,12,15,25,28] classify workloads based on hardware 
profiling, and then choose appropriate scheduling policies 
for different classifications. OS-level approaches for 
memory utilization monitoring [6,7,26,27] have also been 
studied to provide knowledge for resource management.  

9. Conclusions 
We propose and implement a practical, unified, and efficient 
multi-policy memory management framework named HVR 
to address the challenge of allocating appropriate memory 
resources for modern diverse applications. HVR seamlessly 
integrates several existing schemes and new vertical 
partitioning policies by leveraging O-bits and the page 
coloring technique. Through a quantitative study on a large 
quantity of experiments we verify that HVR can 
automatically select appropriate policies based on 
application needs and achieve over 10% performance 
benefits compared to prior allocation methods in many cases.  
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